1樓:老蝦公尺
這是基本的等價無窮小,極限是 1
2樓:匿名使用者
x->0
ln(1+x) ~ x
=lim(x->0) x/x=1
用洛必達法則求極限limx趨向於0[1/ln(x+1)-1/x]
3樓:小小芝麻大大夢
limx趨向於0[1/ln(x+1)-1/x]的極限等於:1/2。
limx趨向於0[1/ln(x+1)-1/x]=[x-ln(x+1)]/xln(x+1)=[x-ln(x+1)]/x^2 【 ln(x+1)和x是等價無窮小,在x趨於0時】
=[1-1/(x+1)]/2x 【0/0型洛必達法則】=x/2x(x+1)
=1/2
擴充套件資料:極限的求法有很多種:
1、連續初等函式,在定義域範圍內求極限,可以將該點直接代入得極限值,因為連續函式的極限值就等於在該點的函式值。
2、利用恒等變形消去零因子(針對於0/0型)。
3、利用無窮大與無窮小的關係求極限。
4、利用無窮小的性質求極限。
5、利用等價無窮小替換求極限,可以將原式化簡計算。
6、利用兩個極限存在準則,求極限,有的題目也可以考慮用放大縮小,再用夾逼定理的方法求極限。
7、利用兩個重要極限公式求極限。
4樓:等待楓葉
limx趨向於0[1/ln(x+1)-1/x]的值為1/2。
解:lim(x→
0)(1/ln(x+1)-1/x)
=lim(x→0)((x-ln(1+x))/(x*ln(1+x)))
=lim(x→0)((x-ln(1+x))/(x*x)) (當x→0時,ln(1+x)等價於x)
=lim(x→0)((1-1/(1+x))/(2x)) (洛必達法則,同時對分子分母求導)
=lim(x→0)(x/(1+x))/(2x))
=lim(x→0)(1/(2*(1+x)))
=1/2
擴充套件資料:
1、極限的重要公式
(1)lim(x→0)sinx/x=1,因此當x趨於0時,sinx等價於x。
(2)lim(x→0)(1+x)^(1/x)=e,或者lim(x→∞)(1+1/x)^x=e。
(3)lim(x→0)(e^x-1)/x=1,因此當x趨於0時,e^x-1等價於x。
2、極限運算法則
令limf(x),limg(x)存在,且令limf(x)=a,limg(x)=b,那麼
(1)加減運算法則
lim(f(x)±g(x))=a±b
(2)乘數運算法則
lim(a*f(x))=a*limf(x),其中a為已知的常數。
3、洛必達法則計算型別
(1)零比零型
若函式f(x)和g(x)滿足lim(x→a)f(x)=0,lim(x→a)g(x)=0,且在點a的某去心鄰域內兩者都可導,且
g'(x)≠0,那麼lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)。
(2)無窮比無窮型
若函式f(x)和g(x)滿足lim(x→a)f(x)=∞,lim(x→a)g(x)=∞,且在點a的某去心鄰域內兩者都可導,且
g'(x)≠0,那麼lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)。
5樓:匿名使用者
把1/ln(1+x)-1/x 通分變成[x-ln(1+x)]/[x*ln(1+x)]當x趨於0時,上式為0比0型不定式用洛必達法則,分子分母分別求導變成:[1-1/(1+x)]/[ln(1+x)+x/(1+x)] 上式仍是0比0型不定式 再次求導變成1/(2+x)當x趨於0時 上式極限為1/2 即為所求極限
6樓:
這個題目難處理
的是分子上的e,可以運用洛必達法則,但也可以通過處理後運用等價無窮小代換 下面運用等價無窮小代換 lim(x→0)(((1+x)^(1/x)-e))/x =lim(x→0)(((1+x)^(1/x)/e-1))/(ex) =lim(x→0)/(ex) =lim(x→0)ln(1+...
求極限求[ln(1-x)]/x在x趨於0時極限
7樓:匿名使用者
1.運用洛必達法則,lim(x →o)ln(1-x)/x=ⅰim(x→o)(-1/1-x)/1=-1(即分子,分母求導求極限)
2…運用等價無窮小變換
當x→o時,ln(1-x)~-x(好比是sin x~x一樣,近似等於它)
即:lim(x→0)1n(1-x)/x=lim(x→o)-x/x=-1(此時不用管x→o)
以上僅供參考,不足請指正
8樓:匿名使用者
運用等價無窮小代換
當x->0時,ln(1-x)~-x
所以原式=lim(x->0) (-x)/x=-1
limx趨近於0ln1x除以x用洛必達法則求極限
分子求導為1 x 1 分母求導為1 x趨向於0 比值為1 用洛必達法則求極限limx趨向於0 1 ln x 1 1 x limx趨向於0 1 ln x 1 1 x 的極限等於 1 2。limx趨向於0 1 ln x 1 1 x x ln x 1 xln x 1 x ln x 1 x 2 ln x 1...
當x趨於0時,ln1xx的極限
法1 當x趨近於0時,ln 1 x 跟x是等價無窮小,故lim ln 1 x x 1 法2 極限是0 0型,故可以用洛比達法則 lim ln 1 x x lim 1 1 x 1 lim 1 1 x 1 題目出錯了吧 應該是x趨於無窮大時,不然沒有極限 也從沒聽說這種問法 那麼x趨於無窮大時 1 x ...
如圖,求極限lim x趨於0根號下1 tanx
這是高等數學中,關於求極限的問題。當x 0時 tanx 0 sinx 0 lim x 0 1 1 1 1 1 2 數學解題方法和技巧。中小學數學,還包括奧數,在學習方面要求方法適宜,有了好的方法和思路,可能會事半功倍!那有哪些方法可以依據呢?希望大家能慣用這些思維和方法來解題!形象思維方法是指人們用...