這個分段函式在0點的左右導數到底是多少

2021-03-04 09:01:00 字數 3330 閱讀 1058

1樓:匿名使用者

x>0 lim x->+0 [f(x)-0]/x-0=(x-0)/(x-0)=1 右側導數是1 x<0 limx->-0[f(x)-0]/(x-0)=-x/x=-1左側導數是-1

連續不一定可導,可導一定連續?那這個分段函式應該怎麼判斷呢,它在分段點的左右導數是相等的嗎?

2樓:善解人意一

前提是連續才可導!所以在x=0處雖然左右導數相等,但還是不可導。

換言之:在連續的條件下,某處的左右導數相等,那麼在該處可導。

3樓:匿名使用者

這類題目,要來好好的根據導自數的定義公式去求左右導數。就以此題為例,f(0)=-1

那麼求左導數的時候,帶入導數求導公式中的f(0)不能是x+1算出來的1,而只能是-1,這時候你看看算出來的左導數到底是1還是無窮大?

說左右導數相等的,都是直接根據左右的函式表示式直接求的。但是根據函式表示式直接求,例如根據左邊的表示式x+1求x=0點的左導數有個前提,那就是f(x)必須左連續,因為(x+1)『=1是根據連續函式求出來的。

現在函式在x=0點不是左連續,所以左導數只能用定義公式求。

左導數=lim(x→0-)[f(x)-f(0)]/(x-0)=lim(x→0-)[(x+1)-(-1)]/x=lim(x→0-)(x+2)/x=∞

分段函式在x=0處是乙個常數,怎麼求在0處的導數

4樓:匿名使用者

這完全就是廢話,任何函式

在任何一點的函式值,都是常數。

例如函式f(x)=x2,在x=0點的時候回,函式值是常數答0;在x=1點的時候,函式值是常數1;在x=2點的時候,函式值是常數4

所以不管是不是分段函式,不管是x=0點還是x=其他的點,函式值必然都是常數。

至於導數,首先看該函式在x=0點的左右極限是否存在並相等?如果存在並相等,就看是否等於定義的函式值,以上都成立,則函式在x=0點處連續。如果有一項不成立,就不連續。

如果不連續,當然不可導。

如果連續,就用導數的定義公式f'(0)=lim(x→0)[f(x)-f(0)]/x來計算導數。需要的時候,可以對左右導數分別求。

注意,任何函式在任何點的函式值,都必然是常數。

如何判斷乙個函式的左右導數是否存在?

5樓:風紀丶槑

這是乙個分段函式

當x=1時,左右導數都等於2,但是左導

數在函式有定義且連續,右倒數在函式無定義,所以左導數存在,右導數不存在。

拓展資料

函式在某一點極限存在的充要條件:

函式左極限和右極限在某點相等則函式極限存在且為左右極限。

如果左右極限不相同、或者不存在。則函式在該點極限不存在。即從左趨向於所求點時的極限值和從右趨向於所求點的極限值相等。

函式極限存在的條件:

函式極限存在的充要條件是在該點左右極限均存在且相等。

函式導數存在的充要條件是在該點左右導數均存在且相等。

6樓:匿名使用者

1、解導數問題,首先要看對應函式的定義域。

2、由圖可知,這個是分段函式。而導數也要分段研究。

3、當x=1時,代入公式可得;左在1上有意義,而右邊無意義,故選b。

其他方法;

1、從理論上來說,如果左導數等於右導數,而且在該點還得有定義,還得連續。

2、從形狀上,或從直覺上的判斷方法是。

分段函式:對於自變數x的不同的取值範圍,有著不同的對應法則,這樣的函式通常叫做分段函式.它是乙個函式,而不是幾個函式:

分段函式的定義域是各段函式定義域的並集,值域也是各段函式值域的並集.

已知函式定義域被分成有限個區間,若在各個區間上表示對應規則的數學表示式一樣,但單獨定義各個區間公共端點處的函式值;或者在各個區間上表示對應規則的數學表示式不完全一樣,則稱這樣的函式為分段函式。

其中定義域所分成的有限個區間稱為分段區間,分段區間的公共端點稱為分界點。

在定義域的不同範圍函式的解析式不同的函式。如狄利克雷函式。

求分段函式的表示式的常用方法有:待定係數法、數形結合法和公式法等。本題採用數形結合法。

例:求二次函式f(x)=x2-2(2a-1)x+5a2-4a+2在[0,1]上的最小值g(a)的解析式。

解:二次函式f(x)=x2-2(2a-1)x+5a2-4a+2=[x-(2a-1)]2+a2+1影象開口向上,對稱軸是x=2a-1.

(1)若2a-1<0即a<二分之一時,二次函式f(x)在[0,1]上的最小值是g(a)=f(0)=5a2-4a+2;

(2)若0≤2a-1<1即二分之一≤a<1時,二次函式f(x)在[0,1]上的最小值是g(a)=f(2a-1)=a2+1;

(3)若2a-1≥1即a≥1時,二次函式f(x)在[0,1]上的最小值是g(a)=f(1)=1-2(2a-1)+5a2-4a+2=5a2-8a+5.

7樓:匿名使用者

我覺得樓上沒說到點子上 我們用求導公式的時候其實是預設這個函式是連續可導的 而連續可導就是每個點左右導數相等 當不能確定可不可導的時候要用定義去探探路。。。。

8樓:nice可樂哥

查了半天,我終於知道問題在哪了。

limf'(1)=[f(1+h)-f(1)] / h。

h->0+

這裡f(1) = 2/3 ,不要帶入x的平方, 因為f(1)是個確切的值,在分段函式中就是2/3。

代入,結果就為無窮大,所以右導數不存在。

9樓:super澈光

我是學生剛學不久覺得是這樣的但是不一定對啊導數存在的前提是函式得連續

limx→1- f(x)=2/3=f(1) 左連續limx→1+ f(x)=1≠f(1) 右不連續所以此分段函式在分段點x=1處左連續 右不連續 也就是x=1處左導數存在而右導數不存在了

10樓:丿心火丶

導數源於函式,函式首先要看定義域。這個函式是分段的。而導數最重要的一點是對連續函式的研究。

x=1是 左=三分之二 右=1 顯然不是連續函式左在1上有定義且連續 而右無定義 故選b 純手打 望採納哦親~

11樓:等風吹啊吹啊吹

右導數用求極限的方法是正無窮,,所以不存在

12樓:匿名使用者

y=x^2,x>1,x的定義域是大於1,x=1不再定義域範圍,導毛啊

13樓:殘垣苟且

極限都求錯了,怎麼研究導數

為什麼說函式在某一點左右導數都存在,則一定連續

我非公式化的抽象的講一下,以便後人理解。導數就是函式的切線,若該點處不連續,則該點為端點,端點無切線,也就是沒導數。書上定理 可導一定連續,連續不一定可導。左右導數不相等認為是不可導。左導左連續,右導右連續嘛,說了可導一定連續,又怎能說不可能一定不連續呢,y x 在x 0處不可導,但左右導數都存在,...

如何判斷函式的左右導數是否存在如何判斷乙個函式的左右導數是否存在?

這是乙個分段函式 當x 1時,左右導數都等於2,但是左導 數在函式有定義且連續,右倒數在函式無定義,所以左導數存在,右導數不存在。拓展資料 函式在某一點極限存在的充要條件 函式左極限和右極限在某點相等則函式極限存在且為左右極限。如果左右極限不相同 或者不存在。則函式在該點極限不存在。即從左趨向於所求...

右導數和導數在某點的右極限的區別是什麼

右導數是考慮那個點的增量,而導數的右極限是考慮那個點右邊的導數。比如f x x 2sin 1 x x 0 0 x 0 x 0這一點的右導數為lim x 0 x 2sin 1 x 0 x lim x 0 xsin 1 x 0 而右導數的極限是lim x 0 f x lim x 0 2xsin 1 x ...