若二元函式在某點處的兩個偏導數都不存在,那麼在該點可微嗎

2021-03-27 09:32:59 字數 3543 閱讀 2747

1樓:匿名使用者

答:不可微

可微性是最嚴格的條件

根據定義,

若極限lim(ρ→0) (δz - f'xδx - f'yδy)/ρ = 0,則函式才可微

二元函式可微分,則偏導數必存在,若偏導數不存在的話函式也必不可微即二元函式在一點處的兩個偏導數存在是二元函式在這一點處可微"必要不充分"條件

若二元函式在某點處的偏導數不存在,則下面選項哪乙個正確( )?

2樓:聽不清啊

若二元函式在某點處的偏導數不存在,則下面選項哪乙個正確( )?

乙個選項也沒有,所以,沒有乙個是正確的。

若多元函式在某點不連續,則在此點偏導數一定不存在 這句話對嗎

3樓:匿名使用者

錯的。多元函式中,函式f(x,y)在某點是否連續與f在該點處兩個偏導數是否都存在兩者沒有關係!例如f=|x|+|y|;f=xy/(x^2+y^2)。答對請給贊蟹蟹

4樓:與天巛爭鋒

這句話是錯的,可由逆否命題證明,既然你知道多元函式在某一點可偏導,並不能保證其在這一點連續。

那麼根據其逆否命題可以得出,多元函式在某一點不連續,並不能保證其在這一點不能偏導。

例:xy/(x?+y?)

5樓:幸福丶小白

對的,函式既然間斷了,那導數必然不存在

但多元函式連續性和可偏導性沒關係,必須同時有可偏導且連續,可以推出可微,進而可以推出連續和可偏導。反之可微可以推出連續,其他什麼都沒有。

二元函式在某點存在偏導數且連續是它在該點可微的什麼條件

6樓:匿名使用者

二元函式在某點存在偏導數且連續是它在該點可微的可微的充分條件。

二元可微函式y= f(x),若自變數在點x的改變量δx與函式相應的改變量δy有關係δy=a×δx+ο(δx)。

其中a為不依賴δx的常數,ο(δx)是比δx高階的無窮小。若函式對x和y的偏導數在這點的某一鄰域內都存在,且均在這點連續,則該函式在這點可微。

7樓:柯西的彷徨

這個是可微的充分條件 ,必要條件是偏導數存在,但不能保證是否偏導數連續。

多元函式在某一點極限不存在,那麼這點偏導數是否存在?還有偏導數存在是趨於乙個方向偏導數存在還是所有

8樓:匿名使用者

多元函式在某一點的極限不存在可以說明在這個點處不連續,但不能說明在這個點的偏導數不存在,例如分段函式f(x,y)=xy/(x^2+y^2),x^2+y^2不等於0,f(x,y)=0,x^2+y^2=0這個函式在點(0,0)處的偏導數極限不存在,但他在(0,0)處的偏導數值是存在的,fx(0,0)=fy(0,0)=0。希望以後回答別人問題的人能先弄清正確答案,不要想當然,這樣不光會誤導問問題的人還會影響後面看到這個問題的人,我看了前一位大佬的回答後就被誤導了,後來問了高數老師才明白

9樓:匿名使用者

多元函式在某一點極限不存在,則在此點不連續,故不存在偏導數,偏導數是指沿某乙個固定方向的導數,不是所有方向。fx(x,y)=fy(x,y)=常數a不能證明此點在某一方向的偏導數存在或不存在。

10樓:綰綰

極限不存在,偏導數可能存在。例如f(x,y)={xy/(x²+y²),(x,y)不=(0,0) 0,(x,y)=(0,0).

它的極限不存在,但是偏導數存在。

根號x^2+y^2在(0,0)點的偏導數不存在,但是按照偏導數定義好像存在?

11樓:love賜華為晨

此函式經過變

換可以化為z^2=x^2+y^2(z大於0),對應的圖形是乙個開口向上的標專準圓錐曲面屬,畫出圖形可以發現在(0,0)點處函式連續.

但求一下偏導你會發現分母是根號(x^2+y^2),當x,y同時為零時,導函式無意義,所以兩個偏導不存在.

12樓:龍夜卉首稷

連續不連續是看左右極限是否相等再判斷中點的,所以說連續;

但求一下偏導你會發現分母是根號(x^2+y^2),當x,y同時為零時,導函式無意義,所以兩個偏導不存在;

肯定不可微;

所以選擇c。

13樓:口口口丶嘿

√△x平方不能開出來直接得△x,根據△x從正負趨近於0,最後應該是+1,-1不定,所以不存在

14樓:匿名使用者

答:這裡應該還漏了什麼條件嗎?

根據定義來做,偏導數的確是不存在的

不妨也想想一元函式時f(x) = |x|在x = 0處的偏導數其實在(0,0)這點是這個錐面的尖點,只有單邊偏導數存在的過程如圖所示:

15樓:匿名使用者

倒數第二步

((dx)^2)^1/2=+dx or -dx

16樓:_行者_煉獄

上面是德爾塔x的絕對值

17樓:xx貓鄉

√(△x)^2/△x=|△x|/△x=±1 由極限唯一性,偏導不存在

18樓:匿名使用者

你去掉根號的時候要加絕對值。不能直接等於1哦

二元函式取的極值是兩個偏導數=0或偏導數不存在,那d選項為什麼不對?

19樓:

x確定為x0之後,二元函式變成了關於y的一元函式,用一元函式的極值定義,就是對y導數為0的點。

20樓:巨蟹亞城木

大哥,這個前提條件都是可微函式了啊,偏導數肯定存在啊

求這個二元函式的極值的時候,求出了駐點,它說沒有偏導數不存在的點。?為什麼要這麼說

21樓:善言而不辯

類似一元函式,二元函式的極值點位於駐點和偏導數不存在的點,如:z=√(x²+y²),顯然(0,0)是極小值點,但在該點兩個偏導數都不存在。

22樓:環

極值點就是要麼偏導數為0,要麼偏導數不存在啊,駐點只是極值點的一種情況而已。

偏導數不存在就是不連續、不光滑或者導數值無窮大的地方吧

23樓:

fx(x,y),fy(x,y)的定義域與f(x,y)的定義域相同,就是沒有偏導數不存在的點。與駐點沒有關係

多元函式不可微則函式的偏導數一定不存在對嗎

24樓:

對於一元函式來說,可導和可微是等價的,而對多元函式來說,偏導數都存在,也保證不了可微性,這是因為偏導數僅僅是在特定方向上的函式變化率,它對函式在某一點附近的變化情況的描述是極不完整的.

1,偏導數存在且連續,則函式必可微!

2,可微必可導!

3,偏導存在與連續不存在任何關係

其幾何意義是:z=f(x,y)在點(x0,y0)的全微分在幾何上表示曲面在點(x0,y0,f(x0,y0))處切平面上點的豎座標的增量。

二元函式fx,y兩個偏導數存在是全微分存在的什麼條件

二元函式 f x,y 兩個偏導數存在是全微分存在的必要條件。全微分存在是偏導數存在的什麼條件。必要不充分條 件。函式連續是偏導存在的既不充分也不必要條件函式連續是全微分存在的必要不充分條件 偏導存在是全微分存在的必要不充分條件 偏導存在是偏導連續的必要不充分條件 全微分存在是偏導連續的必要不充分條件...

高數,偏導數題目求解,題目 二元函式z x y,在點 2,1 處當x 0 1,y

z x 2xy 2 z y 2yx 2 全微分dz 2 2 1dx 2 1 4dy 4dx 8dy 4 0.02 8 0.01 0.16 全增量 z z 2 0.02,1 0.01 z 2,1 2.02 2 1.01 2 2 2 1 2 0.16241604 求函式z y x當x 2,y 1,x 0...

二元函式在一點x,y的偏導數均為零,則該點是A極值點

第乙個題選d,令f x,y x 4 y 4 x 2 2xy y 2分別求f x,y 對x的偏導數和對y的偏導數。聯立兩個偏導數式子得到三個駐點 0,0 1,1 1,1 再分別求a f x,y 對xx的二階偏導數,b f x,y 對xy的二階偏導數,c f x,y 對yy的二階偏導數,用b 2 ac分...