二元函式fx,y兩個偏導數存在是全微分存在的什麼條件

2021-03-04 09:01:07 字數 2409 閱讀 1827

1樓:匿名使用者

二元函式 f(x,y) 兩個偏導數存在是全微分存在的必要條件。

全微分存在是偏導數存在的什麼條件。

2樓:特特拉姆咯哦

必要不充分條

件。函式連續是偏導存在的既不充分也不必要條件函式連續是全微分存在的必要不充分條件

偏導存在是全微分存在的必要不充分條件

偏導存在是偏導連續的必要不充分條件

全微分存在是偏導連續的必要不充分條件

3樓:匿名使用者

答:1、如果函式z=f(x, y) 在(x, y)處的全增量δz=f(x+δx,y+δy)-f(x,y)可以表示為

δz=aδx+bδy+o(ρ),則該函式全微分存在,可以證明,此時a=∂z/∂x,b=∂z/∂y,因此,

全微分存在時偏導都存在的充分條件;

2、而反過來,偏導都存在,卻不一定全微分存在(還要看o(ρ)是否是高階無窮小!)

舉例:f(x,y)=

xy/√(x2+y2) , x2+y2≠00 , x2+y2=0在(0,0)偏導存在,全微分不存在!

3、因此,全微分存在時偏導都存在的充分非必要條件!

函式f(x,y)在點(x0,y0)處全微分存在的條件是什麼?

4樓:假面

在這一點存在連

抄續的偏

襲導數。

先用定義求出該點的偏導數值c,再用求導公式求出不在該點時的偏導數fx(x,y),最後求fx(,x,y)當(x,y)趨於該點時的極限,如果limfx(x,y)=c,即偏導數連續,否則不連續。

5樓:匿名使用者

在這一點存在連續的偏導數

二元函式z=f(x,y)在點(x0,y0)處偏導數存在是f(x,y)在該點連續的什麼條件?

6樓:匿名使用者

偏導存在未必連續,比如偏x存在,那就關於x連續(根據一元函式的性質),但是整個不連續;連續也未必可導,偏導當然也未必存在。

在xoy平面內,當動點由p(x0,y0)沿不同方向變化時,函式f(x,y)的變化快慢一般說來是不同的,因此就需要研究f(x,y)在(x0,y0)點處沿不同方向的變化率。偏導數表示固定面上一點的切線斜率。

偏導數是對乙個變數求導,另乙個變數當做數,對x求偏導的話y就看作乙個數,描述的是x方向上的變化率;對y求偏導的話x就看作乙個數,描述的是y方向上的變化率。

偏導數幾何意義:對x求偏導是曲面z=f(x,y)在x方向上的切線;對y求偏導是曲面z=f(x,y)在x方向上的切線。

全導數本質上就是一元函式的導數。他是針對復合函式而言的定義。一元函式的情況下,導數就是函式的變化率。

7樓:g笑九吖

二元函式z=f(x,y)在點(x0,y0)處偏導數存在是f(x,y)在該點連續的必要條件而非充分條件。

乙個多變數的函式的偏導數,就是它關於其中乙個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化),偏導數在向量分析和微分幾何中是很有用的。

函式z=f(x,y)在點(x0,y0)處連續是它在該點偏導數存在的什麼條件

8樓:匿名使用者

選a必要抄非充分條件

如果函式

襲z在某一點bai(x0,y0)處不連續,那麼它du

在這一點的偏導數是不zhi存在dao的。而且,即使在某一點連續,也不能保證它在該點一定存在偏導數,所以選a。

x方向的偏導

設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域d 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函式 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f'x(x0,y0)或函式 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函式z=f(x,y0)在 x0處的導數。

y方向的偏導

同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函式 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f'y(x0,y0)。

9樓:匿名使用者

選a必要非充分條件

如果函式z在某一點(x0,y0)處不連續,那麼它在這一點的偏導數是不存在的。而且,即使在某一點連續,也不能保證它在該點一定存在偏導數,所以選a。

10樓:

偏導存在未必連續,比如偏x存在,那就關於x連續(根據一元函式的性質),但是整個不連續;連續也未必可導,偏導當然也未必存在。所以選d

fx,y是二元函式,fxy是幾元

f xy 是二元函式,是乙個一元函式f u 和乙個二元函式u xy復合而成的其全微分可以使用微分形式的不變性 df xy df u f u du f xy d xy f xy ydx xdy ff xy dx xf y dy 看你的y怎麼定義的。如果是y f x 那就是一元的復合函式,如果y f x...

若二元函式在某點處的兩個偏導數都不存在,那麼在該點可微嗎

答 不可微 可微性是最嚴格的條件 根據定義,若極限lim 0 z f x x f y y 0,則函式才可微 二元函式可微分,則偏導數必存在,若偏導數不存在的話函式也必不可微即二元函式在一點處的兩個偏導數存在是二元函式在這一點處可微 必要不充分 條件 若二元函式在某點處的偏導數不存在,則下面選項哪乙個...

給定二元函式怎麼判斷是否連續偏導數是否存在

二元函式連續可導可微,最強的乙個是偏導數連續,這個可以推出其他幾個。其次是可微,這個可以推出連續,偏導數存在,極限存在。其他三個強度差不多,偏導存在跟連續和極限存在無關,連續能推出極限存在,反之推不出。設平面點集d包含於r 2,若按照某對應法則f,d中每一點p x,y 都有唯一的實數z與之對應,則稱...