向量的數量積和向量積有什麼不同,數量積和向量積有什麼區別

2021-03-04 09:00:54 字數 6144 閱讀 5878

1樓:匿名使用者

數量級就是abcos,是乙個實數

向量積是absin,表示乙個向量,並且這個向量與a,b組成的平面是垂直的

數量積和向量積有什麼區別

2樓:學雅思

一、指代不同

1、數量積:是接受在實數r上的兩個向量並返回乙個實數值標量的二元運算。它是歐幾里得空間的標準內積。

2、向量積:是一種在向量空間中向量的二元運算。

二、幾何意義不同

1、數量積:在點積運算中,第乙個向量投影到第二個向量上(這裡,向量的順序是不重要的,點積運算是可交換的),然後通過除以它們的標量長度來「標準化」。這樣,這個分數一定是小於等於1的,可以簡單地轉化成乙個角度值。

2、向量積:叉積的長度|a×b|可以解釋成這兩個叉乘向量a,b共起點時,所構成平行四邊形的面積。據此有:

混合積[abc]=(a×b)·c可以得到以a,b,c為稜的平行六面體的體積。

三、應用不同

1、數量積:平面向量的數量積a·b是乙個非常重要的概念,利用它可以很容易地證明平面幾何的許多命題,例如勾股定理、菱形的對角線相互垂直、矩形的對角線相等等。

2、向量積:在物理學光學和計算機圖形學中,叉積被用於求物體光照相關問題。求解光照的核心在於求出物體表面法線,而叉積運算保證了只要已知物體表面的兩個非平行向量(或者不在同一直線的三個點),就可依靠叉積求得法線

3樓:碩穎卿柏胭

向量積的結果是向量,數量積的結果是標量。

向量a×向量b=(absinθ)c°,

c°--是垂直與a.b向量的單位向量。方向符合右手法則。|a×b|=absinθ.(θ---

a,b夾角)

向量a.向量b=abcosθ

(是標量).

4樓:溜達的專用

向量積(矢積)與數量積(標積)的區別

1、在教課中稱呼不同

數量積:標積、內積、數量積、點積

向量積:矢積、外積、向量積、叉積

2、表示式不同

數量積:a×b=c,其中|c|=|a||b|·sinθ,c的方向遵守右手定則

向量積:a·b=|a||b|·cosθ

3、幾何意義不同

數量積:c是垂直a、b所在平面,且以|b|·sinθ為高、|a|為底的平行四邊形的面積

向量積:向量a在向量b方向上的投影與向量b的模的乘積

4、運算結果的不團

數量積:向量(常用於物理)/向量(常用於數學)

向量積:標量(常用於物理)/數量(常用於數學)

擴充套件資料

向量積代數規則

1、反交換律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、與標量乘法相容:(ra)×b=a×(rb)=r(a×b)。

4、不滿足結合律,但滿足雅可比恆等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,線性性和雅可比恆等式別表明:具有向量加法和叉積的r3構成了乙個李代數。

6、兩個非零向量a和b平行,當且僅當a×b=0。

5樓:匿名使用者

向量數量積是兩向量的模相乘再乘以兩向量夾角的余弦值,而向量的向量積是兩模相乘再乘夾角正弦值,此外數量積結果是個標量,向量積結果仍是向量

誰能告訴我向量的數量積和向量積有什麼不同?

6樓:學雅思

一、指代不同

1、數量積:是接受在實數r上的兩個向量並返回乙個實數值標量的二元運算。它是歐幾里得空間的標準內積。

2、向量積:是一種在向量空間中向量的二元運算。

二、幾何意義不同

1、數量積:在點積運算中,第乙個向量投影到第二個向量上(這裡,向量的順序是不重要的,點積運算是可交換的),然後通過除以它們的標量長度來「標準化」。這樣,這個分數一定是小於等於1的,可以簡單地轉化成乙個角度值。

2、向量積:叉積的長度|a×b|可以解釋成這兩個叉乘向量a,b共起點時,所構成平行四邊形的面積。據此有:

混合積[abc]=(a×b)·c可以得到以a,b,c為稜的平行六面體的體積。

三、應用不同

1、數量積:平面向量的數量積a·b是乙個非常重要的概念,利用它可以很容易地證明平面幾何的許多命題,例如勾股定理、菱形的對角線相互垂直、矩形的對角線相等等。

2、向量積:在物理學光學和計算機圖形學中,叉積被用於求物體光照相關問題。求解光照的核心在於求出物體表面法線,而叉積運算保證了只要已知物體表面的兩個非平行向量(或者不在同一直線的三個點),就可依靠叉積求得法線

7樓:匿名使用者

數量級也叫標積,其運算結果是標量

運算法則是a=b*c=b * c * cos&大寫字母代表向量(向量),小寫字母代表相應向量的摩,&代表兩向量間夾角。「*」是乘號,書寫時應用點,

故數量積運算在口語中經常被稱為「點乘」。

向量積也叫矢積,其運算結果是向量

運算法則是a=b×c=b * c *sin&方向為右手螺旋,即右手握拳,拇指向上伸出,讓四指依次垂直穿過式中第乙個向量和第二個向量,拇指方向即a向量方向(注意,b×c和c×b的結果不同,因為向量方向不同。而b*c和c*b的結果相同)。「×」是乘號,書寫時應用乘號,故口語中向量積運算經常被稱為「叉乘」。

向量的運算在物理中應用較多,比如計算力的功w=f*s;

圓周運動線速度v=w×r;洛倫茲力f=q*v×b等

8樓:匿名使用者

數量積是乙個數量,乘出來是乙個數,大小為兩向量的模的乘積再乘以兩向量夾角的余弦,沒有方向。

向量積是乙個向量,乘出來是乙個向量,大小為兩向量的模的乘積再乘以兩向量夾角的正弦,方向與原來的兩個向量垂直且構成右手系(例如a與b的向量積的方向為伸出右手,一手腕為原點,手臂於a平行,大拇指與b平行,而當其餘四指向上立起時所指的方向為向量積的方向)(也可把a看成x軸,b看成y軸,向量積的方向和z軸方向相同)

9樓:小弟有所不知

數量積是數,向量積是向量。數量積的運算滿足交換率,而向量積不滿足。

向量積與數量積有什麼區別

10樓:度夏山彌棠

向量數量積是兩向量的模相乘再乘以兩向量夾角的余弦值,而向量的向量積是兩模相乘再乘夾角正弦值,此外數量積結果是個標量,向量積結果仍是向量

11樓:少苒鄺婷秀

向量積的結

果是向量,數量積的結果是標量。

向量a×向量b=(absinθ)c°,

c°--是垂直與a.b向量的單位向量。方向符合右手法則。|a×b|=absinθ.(θ---

a,b夾角)

向量a.向量b=abcosθ

(是標量).

12樓:居玲玲開運

解:符號

大小方向

數量積:.模長之積*cos(夾角)

無向量積:*

模長之積*sin(夾角)

右手定則

右手定則:a*b

的方向為:

右手大拇指指向a,食指指向b,中指與大拇指和食指所在平面相垂直中指方向為向量積方向

13樓:y神級第六人

數量積的結果是數值,向量積的結果仍然是向量.

向量積(帶方向):也被稱為向量積、叉積(即交叉乘積)、外積,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是乙個偽向量而不是乙個標量。

並且兩個向量的叉積與這兩個向量都垂直。 叉積的長度 |a × b| 可以解釋成以 a 和 b 為邊的平行四邊形的面積.(|a||b|cos)。

乙個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:若座標系是滿足右手定則的,則將右手的拇指指向第乙個向量的方向,右手的食指指向第二個向量的方向,那麼結果向量的方向就是右手中指的方向。由於向量的叉積由座標系確定,所以其結果被稱為偽向量。

數量積 (不帶方向):又稱「內積」、「點積」,物理學上稱為「標量積」。兩向量a與b的數量積是數量|a|·|b|cosθ,記作a·b;其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π)。

即已知兩個非零向量a和b,它們的夾角為θ,則數量|a||b|cosθ叫做a與b的數量積,記作a·b

14樓:季坤由俊雅

數量級也叫標積,其運算結果是標量

運算法則是a=b*c=b*c*cos&

大寫字母代表向量(向量),小寫字母代表相應向量的摩,&代表兩向量間夾角。「*」是乘號,書寫時應用點,

故數量積運算在口語中經常被稱為「點乘」。

向量積也叫矢積,其運算結果是向量

運算法則是a=b×c=b*c*sin&

方向為右手螺旋,即右手握拳,拇指向上伸出,讓四指依次垂直穿過式中第乙個向量和第二個向量,拇指方向即a向量方向(注意,b×c和c×b的結果不同,因為向量方向不同。而b*c和c*b的結果相同)。「×」是乘號,書寫時應用乘號,故口語中向量積運算經常被稱為「叉乘」。

向量的運算在物理中應用較多,比如計算力的功w=f*s;

圓周運動線速度v=w×r;洛倫茲力f=q*v×b等

15樓:赧杏富察綺玉

數量積的答案是數值,而向量積的答案還是向量。前者可看做標量,後者可看做向量。既然向量積可以看做向量,那麼它就有方向,其方向根據右手定則判斷。

數學向量中向量積與數量積有什麼區別?適用於什麼?謝謝

16樓:匿名使用者

向量積是所謂的叉乘,數量積是點乘,向量積主要應用於面積計算和法向量計算和某些物理問題,數量積麼,就是老師無聊讓你算著玩的。

17樓:匿名使用者

數量積是沒有方向只有大小的兩個量的積,向量積是兩個既有大小又有方向的兩個量的積

18樓:劉張戴

向量積與向量積的模區別

向量積和數量積有什麼不同?

19樓:度琬凝員綠

向量積(帶方向):也被稱為向量積、叉積(即交叉乘積)、外積,是專一種在向量空間中向量屬的二元運算。與點積不同,它的運算結果是乙個偽向量而不是乙個標量。

並且兩個向量的叉積與這兩個向量都垂直。

叉積的長度|a×

b|可以解釋成以a和

b為邊的平行四邊形的面積.(|a||b|cos)。乙個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:

若座標系是滿足右手定則的,則將右手的拇指指向第乙個向量的方向,右手的食指指向第二個向量的方向,那麼結果向量的方向就是右手中指的方向。由於向量的叉積由座標系確定,所以其結果被稱為偽向量。

數量積(不帶方向):又稱「內積」、「點積」,物理學上稱為「標量積」。兩向量a與b的數量積是數量|a|·|b|cosθ,記作a·b;其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π)。

即已知兩個非零向量a和b,它們的夾角為θ,則數量|a||b|cosθ叫做a與b的數量積,記作a·b

向量的數量積和向量積怎麼算?

20樓:喲啦卡

|數量積ab=ac+bd

向量積要利用行列式

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),

則 向量a·向量b=a1a2+b1b2+c1c2

向量a×向量b= | i j k|      |a1 b1 c1|    |a2 b2 c2|  =(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)

i、j、k分別為空間中相互垂直的三條座標軸的單位向量

【數量積】

也稱為標量積、點積、點乘,是接受在實數r上的兩個向量並返回乙個實數值標量的二元運算。它是歐幾里得空間的標準內積。

【座標表示】

已知兩個非零向量a=(x1,y1),b=(x2,y2),則有a·b=x1x2+y1y2,即兩個向量的數量積等於它們對應座標的乘積的和。

【向量積】

數學中又稱外積、叉積,物理中稱矢積、叉乘,是一種在 向量空間中向量的 二元運算。與 點積不同,它的運算結果是乙個向量而不是乙個標量。並且兩個向量的叉積與這兩個向量和垂直。

【性質】

叉積的長度 | a× b| 可以解釋成這兩個叉乘向量 a, b共起點時,所構成平行四邊形的面積。據此有:混合積 [ a b c] = ( a× b)· c可以得到以 a, b, c為稜的平行六面體的體積。

向量積和數量積有什麼不同,誰能告訴我向量的數量積和向量積有什麼不同

向量積 帶方向 也被稱為向量積 叉積 即交叉乘積 外積,是專一種在向量空間中向量屬的二元運算。與點積不同,它的運算結果是乙個偽向量而不是乙個標量。並且兩個向量的叉積與這兩個向量都垂直。叉積的長度 a b 可以解釋成以a和 b為邊的平行四邊形的面積.a b cos 乙個簡單的確定滿足 右手定則 的結果...

向量a與向量b的向量積再與向量c的數量積,是否這向量可以

向量a與向量b的向量積位置不能改變,向量積為向量,方向滿足右手定則,數量積為數可以改變方向。即 a b c c a b 三個向量 先向量積後數量積 怎麼互換位置 向量a與向量b的向量積位置不能改變,向量積為向量,方向滿足右手定則,數量積為數可以改變方向.即 a b c c a b 為什麼三向量的向量...

向量積的性質向量的向量積性質ab是以a和b為邊的平行四邊形面積。

叉積的長度 a b 可以解釋成以a和b為鄰邊的平行四邊形的面積。混合積 a b c a b c可以得到以a,b,c為稜的平行六面體的體積。反交換律 a b b a 加法的分配律 a b c a b a c 與標量乘法相容 ra b a rb r a b 不滿足結合律,但滿足雅可比恆等式 a b c ...