1樓:匿名使用者
曲線交點(0,0)、(1,1)
v=∫(0--1)π(x-x^4)dx=π(1/2x²-1/5x^5)|0--1
=π(1/2-1/5)=3π/10
2樓:始霞賞婉
這個體積公式,y=f(x),x=a,x=b,x軸圍成的曲邊梯形繞x軸旋轉一週形成的實心立體的體積公式
v=π∫(0,1)f^2(x)dx
你現在求的是兩個題體積的差,帶入公式就得到上面的解題過程。
求由曲線y=x^2,y=2-x^2所圍成的圖形分別繞x軸和y軸旋轉而成的旋轉體體積
3樓:匿名使用者
繞x軸:
體積為y=2-x^2繞x旋轉的體積減去y=x^2繞x軸旋轉轉的體積v=2[∫pi*(2-x^2)^2dx-∫pi*(x^2)^2dx] 積分下限為0,上限為1,積分區間對稱,所以用2倍0,1區間上的
=pi*8/3
繞y軸:
2條曲線的交點為(-1,1),(1,1)
v=∫pi*ydy+∫pi*(y-2)dy第乙個積分上下限為0,1,第二個積分上下限為1,2=pi
4樓:假裝我的樣子
求無窮限積分∫(0, ∝)e∧(-ax)dx
求曲線y=x^2,x=y^2所圍成的平面圖形的面積及該圖形繞x軸旋轉所成的旋轉體的體積
5樓:匿名使用者
^解得兩交點(0,0)和(1,1)再此範圍內求y=x^0.5 與 y=x^2所夾面積
面積=∫(x^0.5-x^2)dx=2/3*x^1.5-1/3*^3 ; 積分下限是0,上限是1
=1/3
圖形繞x軸旋轉所成的旋轉體的體積表示式為∫π*y^2dx體積=∫π*(x^0.5)^2dx-∫π*(x^2)^2dx ; 積分下限是0,上限是1
=∫π*xdx-∫π*x^4dx
=π*(1/2*x^2-1/5*x^5)
=0.3π
將由曲線y=x和y=x^2所圍成的平面圖形繞x軸旋轉一週,求所得旋轉體的體積
6樓:匿名使用者
直線與曲線的交點:(0,0)、(1,1),所圍區域是第一象限內一弓形,繞 x 軸旋轉一週後外形似一圓錐;
v=∫π(y1²-y2²)dx=[(π*1²)*1]/3﹣∫π(x²)²dx=(π/3)﹣(π/5)*x^5|=2π/15;
求曲線y=x^2和直線y=x圍成的平面圖形繞x軸旋轉而成的旋轉體的體積
7樓:匿名使用者
體積=π∫(0,1)[x²-(x²)²]dx=π×【x³/3-x^5/5】|(0,1)=π×(1/3-1/5)
=2π/15
求由y=2x-x^2與y=0所圍成圖形繞y軸所得旋轉體體積 謝謝了
8樓:寂寞的楓葉
由y=2x-x^2與y=0所圍成圖形繞y軸所得旋轉體體積為8π/3。
解:因為由y=2x-x^2,可得,
x=1±√(1-y)。
又由於平面圖形是由=2x-x^2與y=0所圍成,那麼可得0≤x≤2,0≤y≤1。
那麼根據定積分求旋轉體體積公式,以y為積分變數,可得體積v為,
v=∫(0,1)(π*(1+√(1-y))^2-π*(1-√(1-y))^2)dy
=4π∫(0,1)√(1-y)dy
=-4π∫(0,1)√(1-y)d(1-y)
=-4π*(2/3*(1-y)^(3/2))(0,1)
=-8π/3*(1-y)^(3/2)(0,1)
=-8π/3*(1-1)^(3/2)-(-8π/3*(1-0)^(3/2))
=8π/3
擴充套件資料:
1、定積分∫(a,b)f(x)dx的性質
(1)當a=b時,∫(a,b)f(x)dx=0。
(2)當a>b時,∫(a,b)f(x)dx=-∫(b,a)f(x)dx。
(3)常數可以提到積分號前。即∫(a,b)k*f(x)dx=k*∫(a,b)f(x)dx。
2、利用定積分求旋轉體的體積
(1)找準被旋轉的平面圖形,它的邊界曲線直接決定被積函式。
(2)分清端點。
(3)確定幾何體的構造。
(4)利用定積分進行體積計算。
3、定積分的應用
(1)解決求曲邊圖形的面積問題
(2)求變速直線運動的路程
做變速直線運動的物體經過的路程s,等於其速度函式v=v(t) (v(t)≥0)在時間區間[a,b]上的定積分。
(3)求變力做功
某物體在變力f=f(x)的作用下,在位移區間[a,b]上做的功等於f=f(x)在[a,b]上的定積分。
9樓:唐衛公
y = 2x - x² = 1 - (x - 1)²此為開口向下,頂點為(1, 1)的拋物線; 所需考慮的是其與軸間的部分。
圖形繞y軸旋轉, 以y為自變數更方便.
在y處(0 < y < 1),x值有兩個:
y = 1 - (x - 1)²
x = 1±√(1 - y)
旋轉體在y處的截面為圓環,內外徑分別為r =1-√(1 - y), r = 1+√(1 - y)
截面積 = πr² - πr² = π[1 +√(1 - y)]² - π[1 - √(1 - y)]²
= 4π√(1 - y)
v = ∫¹₀4π√(1 - y)dy
= (-8π/3)(1-y)³/² |¹₀= 0 + 8π/3
= 8π/3
求兩曲線y=x^2與x=y^2圍成的平面圖形的面積 求上述圖形分別繞x軸、y軸旋轉一週所得旋轉體的體積 10
10樓:洪範周
所求圍成的公共面積=1/3 弧長=2.963 旋轉體體積=0.95 表面積=9.
14 由於平面圖形對稱於直線x=y,所以繞兩軸旋轉得出旋轉體的體積和表面積相同,只是影象在x y軸上的位置互換而已。
求由曲線yx2與y2x2圍成的平面圖形的面積
第一象限的交點是 1,1 由對稱性 s 2 0 1 2 x 2 x 2 dx 8 3 確定沒出錯題?這兩條曲線沒法圍出封閉圖形 定積分bai 曲線y 1 x與直線duy x,zhiy 2所圍成dao的面積就是曲線y 1 x與直線y x,x 2所圍成的面積 面積分兩部分求 專左邊是1 2 右邊f x ...
求由曲線y x 2,與直線y 2x所圍成平面圖形的面積
定積分 曲線y 1 x與直線y x,y 2所圍成的面積就是曲線y 1 x與直線y x,x 2所圍成的面積 面積分兩部分求 左邊是1 2 右邊f x 1 x 所以f x lnx 右邊面積就是f 2 f 1 ln2 ln1 ln2 總面積就是ln2 1 2 拋物線和直線的交點座標為 1 6,7 2 6 ...
曲線y x 2與直線y 2x圍成的平面圖形饒y軸旋轉一週所得旋轉體的體積V
y x 2x x 2x x x 2 0,x 0,x 2 交點o 0,0 a 2,4 繞y軸旋轉,用y做自變數較為方便 在y處 0 y 4 旋轉體的截面為外徑r x y,內徑r x y 2 的圓環 截面積 r r y y 4 旋轉體的體積 v y y 4 dy y 2 y 12 8 3 求曲線y x ...