求由曲線yx3與直線yx,y4x所圍平面圖形繞X軸旋

2021-03-04 08:28:47 字數 2090 閱讀 8854

1樓:匿名使用者

你說得沒錯,應該分為二部分,因為它是關於原點對稱,若是求僅求定積分,則因是奇函式,結果為0,但它是求旋轉體體積,則只求一半,然後乘以2即可。

先求出交點座標,o(0,0),a(1,1),b(2,8),c(-1,-1),d(-2,-8),

只求第一象限。

v=2π(4^2-1^2)/3+2π∫[1,2][(4x)^2-(x^3)^2]dx

=10π+2π∫[1,2][(16x^2-x^6)dx=10π+2π(16x^3/3-x^7/7)[1,2]=10π+2π(128/3-128/7-16/3+1/7)=1016π/21.

前面部分為二圓錐體積相減,區間為[0,1],得10π。

求由曲線y=x^3與直線x=2,y=0所圍平面圖形繞y軸旋轉一週而成的旋轉體的體積.

2樓:匿名使用者

答案沒錯。過程如圖。經濟數學團隊幫你解答。請及**價。謝謝!

求由曲線y=x^2與直線y=x,y=2x所圍平面圖形繞x軸旋轉而成的旋轉體的體積!

3樓:匿名使用者

先求出交點為o(0,0),a(1,1),b(2,4),v=π(2^2-1^2)*1/3+π∫[1,2]((2x)^2-(x^2)^2]dx

=π+π∫[1,2](4x^2-x^4)dx=π+π(4x^3/3-x^5/5)[1,2]= π+47π/15

=62π/15.

從0至1的積分是兩個圓錐體積相減,得π。

4樓:匿名使用者

31pi/5

pi*x4次方,對x從1到2積分,得到。

面積為3

求由曲線y=x^2及x=y^2所圍圖形繞x軸旋轉一週所生成的旋轉體的體積。最好有圖形和計算的詳細過程,謝謝。 15

5樓:薔祀

解:易知圍成圖形為x定義在[0,1]上的兩條曲線分別為y=x^2及x=y^2,

旋轉體的體積為x=y^2,

繞y軸旋轉體的體積v1 減去 y=x^2繞y軸旋轉體的體積v2。

v1=π∫ydy,v2=π∫y^4dy 積分區間為0到1,v1-v2=3π/10.

注:函式x=f(y)繞y軸旋轉體的體積為v=π∫f(y)^2dy.

擴充套件資料

傳統定義

一般的,在乙個變化過程中,假設有兩個變數x、y,如果對於任意乙個x都有唯一確定的乙個y和它對應,那麼就稱x是自變數,y是x的函式。x的取值範圍叫做這個函式的定義域,相應y的取值範圍叫做函式的值域 。

近代定義

設a,b是非空的數集,如果按照某種確定的對應關係f,使對於集合a中的任意乙個數x,在集合b中都有唯一確定的數  和它對應,那麼就稱對映  為從集合a到集合b的乙個函式,記作  或  。

其中x叫作自變數,  叫做x的函式,集合  叫做函式的定義域,與x對應的y叫做函式值,函式值的集合  叫做函式的值域,  叫做對應法則。其中,定義域、值域和對應法則被稱為函式三要素

定義域,值域,對應法則稱為函式的三要素。一般書寫為  。若省略定義域,一般是指使函式有意義的集合 。

函式過程中的這些語句用於完成某些有意義的工作——通常是處理文字,控制輸入或計算數值。通過在程式**中引入函式名稱和所需的引數,可在該程式中執行(或稱呼叫)該函式。

類似過程,不過函式一般都有乙個返回值。它們都可在自己結構裡面呼叫自己,稱為遞迴。

大多數程式語言構建函式的方法裡都含有函式關鍵字(或稱保留字)。

參考資料

6樓:青春愛的舞姿

求曲線的y=x2的級別,以及y等於3x周圍的新藥課程旋轉一週所稱的旋轉固體的體積。

將由曲線y=x和y=x^2所圍成的平面圖形繞x軸旋轉一週,求所得旋轉體的體積

7樓:匿名使用者

直線與曲線的交點:(0,0)、(1,1),所圍區域是第一象限內一弓形,繞 x 軸旋轉一週後外形似一圓錐;

v=∫π(y1²-y2²)dx=[(π*1²)*1]/3﹣∫π(x²)²dx=(π/3)﹣(π/5)*x^5|=2π/15;

設由曲線yx3,直線x2及x軸圍成的平面圖形為D,求該

s 0,2 x 3dx 4 v pi 0,2 x 3 2dx pi 0,2 x 6dx 128pi 7 求由曲線y e x與直線x 0,x 1,y 0所圍成的平面圖形繞y軸旋轉一週而成的旋轉體的體積 2 4 e 解題過程如下 x 0,y e 0 1 x 1,y 1 e 繞y軸旋轉,用y做自變數較方便...

求由曲線y x 2,與直線y 2x所圍成平面圖形的面積

定積分 曲線y 1 x與直線y x,y 2所圍成的面積就是曲線y 1 x與直線y x,x 2所圍成的面積 面積分兩部分求 左邊是1 2 右邊f x 1 x 所以f x lnx 右邊面積就是f 2 f 1 ln2 ln1 ln2 總面積就是ln2 1 2 拋物線和直線的交點座標為 1 6,7 2 6 ...

求曲線y x 2與直線y 2x所圍平面圖形繞x軸旋轉一週所得

求曲線y x 與直線y 2x所圍平面圖形繞x軸旋轉一週所得旋轉體的體積解 由x 2x x x 2 0,得x 0,x 2 即直線與拋物線相交於o 0,0 和a 2,4 1 3 4 2 0,2 x dx 32 3 x 5 5 0,2 32 3 32 5 64 15 要用到積分,由旋轉體體積的公式有 v ...