設由曲線yx3,直線x2及x軸圍成的平面圖形為D,求該

2021-03-04 08:28:47 字數 1783 閱讀 2033

1樓:匿名使用者

s=∫<0,2>x^3dx=4

v=pi∫<0,2>(x^3)^2dx=pi∫<0,2>x^6dx=128pi/7

求由曲線y=e∧-x與直線x=0,x=1,y=0所圍成的平面圖形繞y軸旋轉一週而成的旋轉體的體積

2樓:drar_迪麗熱巴

2π - 4π/e

解題過程如下:

x = 0, y = e^0 = 1

x = 1, y = 1/e

繞y軸旋轉, 用y做自變數較方便: y = e^(-x), x = -lny

0 < y < 1/e時, 旋轉體為: 截面為半徑=1, 高為1/e的圓柱, 體積v1 = π*1²*1/e = π/e

1/e < y < 1處, 旋轉體截面為以|-lny|為半徑的圓, v2 = ∫πln²ydy

= πy(ln²y - 2lny + 2) (1/e ->1)

= π(0 - 0 +2) - π(1 + 2 + 2)/e

= 2π - 5π/e

v = v1 +v2 = π/e + 2π - 5π/e

= 2π - 4π/e

冪函式是基本初等函式之一。

一般地,y=xα(α為有理數)的函式,即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。例如函式y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0時x≠0)等都是冪函式。

性質正值性質

當α>0時,冪函式y=xα有下列性質:

a、影象都經過點(1,1)(0,0);

b、函式的影象在區間[0,+∞)上是增函式;

c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;

負值性質

當α<0時,冪函式y=xα有下列性質:

a、影象都通過點(1,1);

b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。

c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。

設曲線y=x^2,y=x^3 所圍成的平面圖形d 求d的面積 求d繞x軸旋轉的旋轉體 5

3樓:匿名使用者

交點:a(0,0);b(1,1)

d的面積微元:ds=(x^2-x^3)dxd的面積=∫ds=∫[0∽1](x^2-x^3)dx=【(1/3)x^3-(1/4)x^4】|x=1

=1/3-1/4=1/12

旋轉體體積=∫dv=∫π[(x^2)^2-(x^3)^2]dx=π【(1/5)x^5-(1/7)x^7】|x=1

=π(1/5-1/7)=2π/35 《忽略x=0的計算》

求由曲線y=x^3與直線x=2,y=0所圍平面圖形繞y軸旋轉一週而成的旋轉體的體積.

4樓:匿名使用者

答案沒錯。過程如圖。經濟數學團隊幫你解答。請及**價。謝謝!

求由曲線y=x3(x的三次方)和直線x=2,y=0圍成的平面圖形繞y軸旋轉一週形成的旋轉體體積

5樓:demon陌

具體回答如圖:

曲線是動點運動時,方向連續變化所成的線,也可以想象成彎曲的波狀線。同時,曲線一詞又可特指人體的線條。數學中也指直線和非直的線的統稱,不指一般意義上的「曲線」。

求曲線yx2,yx22與x軸圍成的平面圖形的面

解答 聯立y 制x 與y x 2 得交點 1,1 s 0,1 x dx 1,2 x 2 dx 1 3x 0,1 1,2 x 4x 4 dx 1 3x 0,1 1 3x 2x 4x 0,1 1 3 1 3 2 4 8 3.但願對你有幫助!求曲線y x 2,y x 2 2與x軸圍成的平面圖形的面積 圍成...

求由曲線y x 2,與直線y 2x所圍成平面圖形的面積

定積分 曲線y 1 x與直線y x,y 2所圍成的面積就是曲線y 1 x與直線y x,x 2所圍成的面積 面積分兩部分求 左邊是1 2 右邊f x 1 x 所以f x lnx 右邊面積就是f 2 f 1 ln2 ln1 ln2 總面積就是ln2 1 2 拋物線和直線的交點座標為 1 6,7 2 6 ...

求由曲線yx3與直線yx,y4x所圍平面圖形繞X軸旋

你說得沒錯,應該分為二部分,因為它是關於原點對稱,若是求僅求定積分,則因是奇函式,結果為0,但它是求旋轉體體積,則只求一半,然後乘以2即可。先求出交點座標,o 0,0 a 1,1 b 2,8 c 1,1 d 2,8 只求第一象限。v 2 4 2 1 2 3 2 1,2 4x 2 x 3 2 dx 1...