1樓:匿名使用者
導數和極限的關係:
導數的定義就是某種形式極限,用定義求導數就是求某種形式極限。
導數和導函式的關係:
函式在任意點x處的導數f』(x)就是導函式。
導數和微分的關係:
在概念上是等價關係,在計算時有公式dy=f』(x)dx。
導數和不定積分的關係:
不定積分表示的是全體原函式,求原函式與求導運算互為逆運算。
定積分的計算公式——牛頓萊布尼茨公式(微積分基本公式)是利用原函式來計算定積分的公式。
導數,微分,積分之間有什麼聯絡和區別
2樓:匿名使用者
簡單的理解,導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。積分是求原函式,可以形象理解為是函式導數的逆運算。
通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx,而其導數則為:y'=f'(x)。
設f(x)為函式f(x)的乙個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。
3樓:牙牙啊
導數、微分和積分都是一種運算法則,和加減乘除是乙個型別。當年牛頓搞的是導數,和積分。萊布尼茲從另乙個角度也搞了研究,他是從微分的角度出發的,來搞微分和積分的。
雖然出發點不一樣,但導數和微分,二者在本質上是一樣的。僅僅表示形式不同。積分是導數(也是微分)的逆運算。
導數導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生乙個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。 導數是函式的區域性性質。
乙個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函式進行區域性的線性逼近。
例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。 不是所有的函式都有導數,乙個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。
然而,可導的函式一定連續;不連續的函式一定不可導。
對於可導的函式f(x),x↦f'(x)也是乙個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。實質上,求導就是乙個求極限的過程,導數的四則運算法則也**於極限的四則運算法則。
反之,已知導函式也可以倒過來求原來的函式,即不定積分。微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
4樓:華山論劍部落格
微分:無限小塊的增量可以看作是變化率,也就是導數。
積分:無限小塊的面積和可以看作是整個面積。
5樓:匿名使用者
微分是什麼,微分導數教學,帶你弄懂微積分導數的整體邏輯!
6樓:愛作你的兔子
可導必連續,閉區間上連續一定可積,可積一定有界
不定積分,定積分,原函式之間有什麼關係 區別。謝謝各位前輩從理論上說明。
7樓:飄飄記
一、理論不同
1、不定積分是乙個函式集(各函式只相差乙個常數),它就是所積函式的原函式(個數是無窮)。
定積分(它是乙個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)。
2、函式 f(x)的定積分與這個函式的原函式f(x) 是緊密聯絡的. 定積分是由函式話f(x)確定的的某個值(乙個數),而原函式f(x)是乙個函式,它的導數是f(x),而不定積分是所有的原函式。
3、不定積分計算的是原函式(得出的結果是乙個式子);定積分計算的是具體的數值(得出的借給是乙個具體的數字)
擴充套件資料
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
性質1、函式的和的不定積分等於各個函式的不定積分的和;即:設函式
及的原函式存在,則
2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式
的原函式存在,
非零常數,則
8樓:不是苦瓜是什麼
聯絡:不定積分是所有原函式的稱呼,可以理解為同乙個東西,是微分的逆問題。
區別:1.不定積分是乙個函式集(各函式只相差乙個常數),它就是所積函式的原函式(個數是無窮)。
定積分(它是乙個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)。
2.函式 f(x)的定積分與這個函式的原函式f(x) 是緊密聯絡的. 定積分是由函式話f(x)確定的的某個值(乙個數),而原函式f(x)是乙個函式,它的導數是f(x),而不定積分是所有的原函式。
3.不定積分計算的是原函式(得出的結果是乙個式子);定積分計算的是具體的數值(得出的借給是乙個具體的數字)
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
9樓:匿名使用者
不定積分是乙個函式集(各函式只相差乙個常數),它就是所積函式的原函式(個數是無窮)
至於定積分(它是乙個數,常數),它可以通過不定積分來求得(牛頓萊布尼茨公式)
10樓:怡怡的佳
不定積分的結果是乙個表示式,定積分的結果是常數,不定積分是求被積函式的原函式
極限,導數,微分,不定積分,定積分,到底什麼關係
11樓:丁亭晚史姬
微積分包括微分和積分
積分包括不定積分和定積分
其中不定積分沒有積分上下限
所得原函式後面加乙個常數c
定積分是在不定積分的基礎上
加上了積分上下限
所得的是數
dy/dx
叫導數將dx乘到等式右邊
就是微分
12樓:景高掌彭澤
極限是微分、導數、不定積分、定積分的基礎,最初微積分由牛頓、萊布尼茨發現的時候,沒有嚴格的定義,後來法國數學家柯西運用極限,使微積分有了嚴格的數學基礎。極限是導數的基礎,導數是極限的化簡。微分是導數的變形,兩相基本是同乙個東西,相當於乙個穿衣服,乙個沒穿衣服。
積分是微分的逆運算,就象乘法一除法一樣的關係。定積分是積分的特例,加上了區間,消除了常數c。
微分,積分和導數是什麼關係
13樓:_深__藍
導數是函式影象在某一點處的斜率,是縱座標增量(δy)和橫座標增量(δx)在δx-->0時的比值。而微分是指函式影象在某一點處的切線在橫座標取得增量δx以後,縱座標取得的增量,一般表示為dy。
積分是微分的逆運算,即知道了函式的導函式,反求原函式。積分被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。乙個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。
微分,積分,導數推導過程:
設函式y = f(x)在x的鄰域內有定義,x及x + δx在此區間內。如果函式的增量δy = f(x + δx) - f(x)可表示為 δy = aδx + o(δx)(其中a是不不隨δx改變的常量,但a可以隨x改變),而o(δx)是比δx高階的無窮小。
那麼稱函式f(x)在點x是可微的,且aδx稱作函式在點x相應於因變數增量δy的微分,記作dy,即dy = aδx。函式的微分是函式增量的主要部分,且是δx的線性函式,故說函式的微分是函式增量的線性主部(△x→0)。
設函式y = f(x)在某區間內有定義,x0及x0+△x在這區間內,若函式的增量δy = f(x0 + δx) − f(x0)可表示為δy = aδx + o(δx),其中a是不依賴於△x的常數, o(δx)是△x的高階無窮小,則稱函式y = f(x)在點x0是可微的。 aδx叫做函式在點x0相應於自變數增量△x的微分。
14樓:匿名使用者
簡單的理解,導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。積分是求原函式,可以形象理解為是函式導數的逆運算。
通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx,而其導數則為:y'=f'(x)。
設f(x)為函式f(x)的乙個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。
15樓:北極雪
1、歷史發展不同:微分的歷史比積分悠久。希臘時期,人類討論「無窮」、「極限」以及「無窮分割」等概念是微分的**基礎。
而積分是由德國數學家波恩哈德·黎曼於19世紀提出的概念。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。2、數學表達不同:
微分:導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。積分:
設f(x)為函式f(x)的乙個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。3、幾何意義不同:
微分:設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲線在點m的切線對應δx在縱座標上的增量。幾何意義是將線段無線縮小來近似代替曲線段。
積分:實際操作中可以用粗略的方式進行估算一些未知量,但隨著科技的發展,很多時候需要知道精確的數值。要求簡單幾何形體的面積或體積,可以套用已知的公式。
比如乙個長方體狀的游泳池的容積可以用長×寬×高求出。4、實際應用不同:微分和積分是相反的一對運算。
微分是求變化率,積分是求變化總量。比如,求加速度,就是用微分,即對速度進行求導,如果是求路程,就是對速度在某個時間段內進行積分。
不定積分用湊微分法求解,不定積分中的湊微分法解釋一下
e 3 x x dx 2 e 3 x 2 x dx 2 e 3 x d x 2 3 e 3 x d 3 x 2 3 d e 3 x 2 3 e 3 x c 不定積分中的湊微分法解釋一下 湊微分法是把被積分式湊成某個函式的微分的積分方法,是換元積分法中的一種方法。有時需要積分的式子與固定的積分公式不同...
不定積分和定積分怎麼區分
不定積分計算的是原函式 得出的結果是乙個式子 定積分計算的是具體的數值 得出的借給是乙個具體的數字 不定積分是微分的逆運算。而定積分是建立在不定積分的基礎上把值代進去相減。積分 積分,時乙個積累起來的分數,現在網上,有很多的積分活動。象各種電子郵箱,qq等。在微積分中。積分是微分的逆運算,即知道了函...
不定積分原函式為什麼不同,關於不定積分問題。求出原函式,方法不同結果會不一樣。
不定積分的結果要加常數c,你這兩個結果加上常數c,就是乙個結果了。因為這兩個函式也只是相差乙個常數。因為原函式有係數c,你沒加。他的存在就是因為原函式不唯一。定積分就可以取消c了。關於不定積分問題。求出原函式,方法不同結果會不一樣。不同的方法求出的原函式形式可能會不太相同,但是通過適當的恒等變形是能...