a是n乘以n的矩陣,求detkakn1de

2021-03-04 04:58:15 字數 845 閱讀 4104

1樓:陳

det(ka)=k^ndet(a) 這是行列式和矩陣的性質差距

線性代數問題:為什麼a的行列式乘以a的伴隨矩陣的行列式等於a的行列式的n-1次方。

2樓:drar_迪麗熱巴

|^aa*=|a|e;|aa*|=|a|^n

把|a|提到e裡面去,會發現從左上到右下的一列數都是|a|,所以|a|e=|a|^n。

矩陣行列式(determinant of a matrix)是指矩陣的全部元素構成的行列式,設a=(aij)是數域p上的乙個n階矩陣,則所有a=(aij)中的元素組成的行列式稱為矩陣a的行列式,記為|a|或det(a)。

若a,b是數域p上的兩個n階矩陣,k是p中的任乙個數,則|ab|=|a||b|,|ka|=kn|a|,|a*|=|a|n-1,其中a*是a的伴隨矩陣;若a是可逆矩陣,則|a-1|=|a|-1。

相關定理

定理1 設a為一n×n矩陣,則det(at)=det(a)[2]。

證 對n採用數學歸納法證明。顯然,因為1×1矩陣是對稱的,該結論對n=1是成立的。假設這個結論對所有k×k矩陣也是成立的,對(k+1)×(k+1)矩陣a,將det(a)按照a的第一行,我們有:

det(a)=a11det(m11)-a12det(m12)+-…±a1,k+1det(m1,k+1)。

定理2 設a為一n×n三角形矩陣。則a的行列式等於a的對角元素的乘積。

根據定理1,只需證明結論對下三角形矩陣成立。利用余子式和對n的歸納法,容易證明這個結論。

3樓:盛夏曉光

aa*=|a|e

|aa*|=|a|^n

設A是n階正定矩陣,Ab是n階實對稱矩陣,證明AB正定的充要

a正定,則存在可逆陣c,使得a c tc。於是有公式 ab c tcb c t cbc 1 c。充分性 若b的特徵值都大於0,則cbc 1 的特徵值與b的特徵值一樣都大於0,於是ab合同於cbc 1 特徵值都大於0,ab正定。反之,ab正定,則由於ab與cbc 1 合同,故cbc 1 是正定陣,其特...

設A是mxn矩陣,E是n階單位陣,矩陣BaEATA是正

這是向量內積的非負性.即對任意n維列向量a,總是有 a,a 0.等號成立的充分必要條件是 a 0.x 專tx x,x 是x的對應分量乘積之和即若屬 x a1,an t,則 x tx a1 2 an 2 0 ax 也是乙個列向量,也滿足 ax ax 0 設a為m n實矩陣,e為n階單位矩陣.已知矩陣b...

矩陣問題設n階矩陣A的伴隨矩陣為A證明1若

1 a 0 則秩 n 1 若秩元素都為0 若秩 n 1,則a 不等於0矩陣,且由aa a e 0知,a 的列向量為ax 0的解,從回而秩a 1 綜上答可知秩a 1,顯然 a 0 2 若 a 0結論顯然成立 若 a 不等於0,則由 aa a e兩邊取行列式,可得結論。1 是 2 的特殊情況 證明請看 ...