高中數學數列與不等式結合的題目,有一道高中數學不等式的題目,不難,就是有點疑問,幫幫忙哈!題目如下 1 a b 2, 2 a b 4,

2022-06-25 06:55:04 字數 3832 閱讀 2459

1樓:匿名使用者

a(n+1)=1/(2-an)可以用特徵根髮求通項公式,實在不會的話就用數學歸納法。

本題對應的特徵方程為x(2-x)=1所以x=1

所以an=1+1/cn其中cn=-2-(n-1)=-n-1所以an=n/(n+1)

bn=1/n第二問比較簡單

設dn=b3n-bn=1/(n+1)+1/(n+2)+1/(n+3)+·····+1/(n+2n)

所以dn+1=b3(n+1)-bn+1=1/(n+2)+1/(n+3)+·····+1/(n+1+2n+2)

所以dn+1-dn=1/(n+1+2n)+1/(n+1+2n+1)+1/(n+1+2n+2)-1/(n+1)

=1/(3n+1)+1/(3n+2)+1/(3n+3)-3/(3n+3)

=1/(3n+1)+1/(3n+2)-2/(3n+3)>0

所以dn+1>dn即dn遞增,所以d1=b3-b1=1/2+1/3=5/6最小

對任意n∈n+且n≥2都有b3n-bn>m/20成立

所以5/6>m/20即m<50/3所以m最大為16

2樓:匿名使用者

1------------

a(n+1)

=(1-0*an) /(2- an)=(2-1*a(n-1))/(3-2*a(n-1))=(3-2*a(n-2))/(4-3*a(n-2))=......

=(n-(n-1)*a1)/(n+1-n*a1)=(n+1)/(2+n) ,,,,,(n>1)==>an=n/(n+1)

有一道高中數學不等式的題目,不難,就是有點疑問,幫幫忙哈!題目如下:1≤a-b≤2, 2≤a+b≤4,

3樓:匿名使用者

如果你會畫出這個不等式在座標軸下的影象區域,這個不等式組,在以a、b為橫縱座標的座標系下,表示乙個傾斜的矩形區域,當a取到最大值的時候,b並不是最大值,也不是最小值

5a-b的最大值,並不是簡單的把a的最大值和b的最小值代入,a的最大值和b的最小值是不能同時取到的。應該做出直線5a-b的函式影象,使其落在矩形區域內,再求其極值

也可以用整體代換的思想,把a-b和a+b分別當做乙個整體,待定係數來表示5a-b

4樓:我不是他舅

如果用加減法解出a和b範圍

則他們不一定同時能娶到最大或最小

所以這樣是不行的

5樓:lovect讀書學習

不可以直接加減求a,b,可以這樣做:a=x(a-b)+y(a+b)=a(x+y)+b(y-x) 然後用待定係數法求出x和y就可以算了。

6樓:內山土鴨

3/2小於等於a小於等於3,1/2小於等於b小於等於1

收集高中三角函式和數列結合題

7樓:匿名使用者

在三角形abc中若lgsins,lgsinb,lgsinc成等差數列,且三個內角a b c也成等差數列,試著判斷三角形的形狀

等邊三角形

lgsina,lgsinb,lgsinc成等差數列得sinb^2=sinasinb

且三內角a,b,c也成等差數列,b=60

代入得sinasinb=3/4

假設a=60-a,b=60+a

代入得sin(60-a)sin(60+a)=3/4(別怕麻煩)得cosa^2=1

所以a=0

所以a=b=c=60

8樓:三味學堂答疑室

1、已知sin2x和sinx分別是sina和cosa的等差中項和等比中項,求cos2x

解:2*sin2x=sina+cosa

sinx^2=sina*cosa

因為sina^2+cosa^2=(sina+cosa)^2-2sina*cosa=1,所以

(2*sin2x)^2-2*sinx^2=1,又因為:cos2x=1-2*sinx^2,所以:4*(1-cos2x^2)+cos2x-1=14*cos2x^2-cos2x-2=0

cos2x=(1-根號33)/8 或 (1+根號33)/8

9樓:匿名使用者

三角函式很少跟 數列結合一起考的

通常 數列 與函式

數列與解析幾何

數列與不等式

這些交匯得比較多

10樓:匿名使用者

給你發過去了,希望對你有幫助

高中數學不等式的題目:有不等式x²-x-2>0,2x²+(5+2a)x+5a<0交集整數值只有-2,求a的取值範圍

11樓:

交集整數值只有-2:

x^2-x-2>0

x>2  or  x<-1

2x²+(5+2a)x+5a<0

(2x+5)(x+a)<0

分節點討論,節點有:x=-2.5  x=-1  x=2  x=-a   其中-a不確定。

如是:畫圖:

以上當-ae[-1,2]時,即ae[-2,1]可以保證:交集中只有-2乙個整數。(圖c)

另外圖b中,-ae[-2.5,-1] 即:ae[1,2.5] ,-a<-2時,無整數解,-a>-2時,a<2時有整數解。

所以ae[1.2]時有且僅有整數解x=-2

綜合得:ae[-2,2] 最後,驗證邊界值,a=2時,xe(-2.5,-2)無整數解。

所以,ae[-2,2)

12樓:匿名使用者

由x²-x-2>0得

x<-1或x>2

由2x²+(5+2a)x+5a<0得

(2x+5)(x+a)<0

方程(2x+5)(x+a)=0兩根為

x=-5/2或-a

若-a≤-5/2即a≥5/2時

(2x+5)(x+a)<0的解集為

-a-5/2即a<5/2時

(2x+5)(x+a)<0的解集為

-5/2

要使不等式x²-x-2>0,2x²+(5+2a)x+5a<0交集整數值只有-2

則-2<-a≤-1

所以1≤a<2

13樓:

1、第乙個不等式得:(x-2)(x+1)>0,即 x>2或x<-1;

2、第二個不等式得:(2x+5)(x+a)<0,即①當a>5/2時,-a

3、因為兩個不等式交集整數只有-2,所以排除①③,即-5/2

高中數學不等式問題。學術問題,謝絕業餘娛樂者 √8-√6 與 √7-√5 之間的大小關係

14樓:鈕攸

分子有理化。√8-√6=2/(√8+√6)√7-√5=2/(√7+√5)。∵√8+√6>√7+√5∴2/(√8+√6)<2/(√7+√5)∴√8-√6<√7-√5還可以做差,不過不好做

15樓:穗子和子一

先做個變換

(√8-√6 )- (√7-√5) =(√8+√5) -(√6 +√7)

變成了比較 (√8+√5) 和(√6 +√7) 的大小兩邊同時來個平方 8+5+√(5x8) 和6+7+√(6x7) 的大小

也就是13+√40 和 13+√42的大小顯然前者比後者小。。

返回去就知道了 √8-√6 比 √7-√5 小

16樓:彤花萬里

√8-√6 =2/(√8+√6)

√7-√5 =2/( √7+√5)

因為√8+√6>√7+√5(同時平方可得到)所以√8-√6<√7-√5

高中數學均值不等式習題,高中數學均值不等式

a3 b3 c3 3abc 只要證明2 a3 b3 c3 6abc 即可。2 a3 b3 c3 a 3 b 3 b 3 c 3 c 3 a 3 a b a 2 ab b 2 b c b 2 bc c 2 c a c 2 ca a 2 因為a 2 b 2 2ab a b ab b c bc c a c...

高中數學不等式不等式組

1 不等式化為 x 2 x 3 0由於對應的方程 x 2 x 3 0的根為2,3所以 解集為 2,3 2 4x 2 4x 1 2x 1 2 0所以原不等式等價於 2x 1 2 0 所以 x 1 2 3 x 2 4x 2 x 0 分子分母的零點是 0,2 6,2 6所以不等式的解集是 2 6,0 2 ...

高中數學不等式題,求解

解法一 由柯西不等式,b2 a a2 b a b a b 2即b2 a a2 b a b.解法二 所有能用柯西不等式解決的問題用基本不等式均能解決 基本不等式a b 2倍根號下ab 則 b2 a a2 b a b a 2 b 2 a 3 b b 3 a a 2 b 2 2倍根號下a 2b 2 a 2...