誰能幫我找找關於高中不等式的證明方法及其相應2到4到經典例題(方法要求簡明易懂)

2021-03-28 00:51:30 字數 6738 閱讀 7379

1樓:匿名使用者

推薦一本書,典中典吧,應該是這麼寫的。這本書題目很難,但是題目都很經典,答案解析也很不錯。不等式的證明方法上面也有很多不同的。

關鍵是如果你現在正在學這章,一定要多做題,熟練了反應就會很快。

2樓:匿名使用者

不等式的證明

1.比較法

作差作商後的式子變形,判斷正負或與1比較大小

作差比較法-----要證明a>b,只要證明a-b>0.

作商比較法---已知a,b都是正數,要證明a>b,只要證明a/b>1

例1 求證:x2+3>3x

證明:∵(x2+3)-3x=x2-3x+()2-()2+3

=+≥>0

∴ x2+3>3x

例2 已知a,b r+,並且a≠b,求證

a5+b5>a3b2+a2b3

證明:(a5+b5)-(a3b2+a2b3)=(a5-a3b2)-(a2b3-b5)

=a3(a2-b2)-b3(a2-b2)=(a2-b2)(a3-b3)

=(a+b)(a-b)2(a2+ab+b2)

∵ a,b r+

∴ a+b>0, a2+ab+b2>0

又因為a≠b,所以(a-b)2>0

∴ (a+b)(a-b)2(a2+ab+b2)>0

即 (a5+b5)-(a3b2+a2b3)>0

∴ a5+b5>a3b2+a2b3

例3 已知a,b r+,求證:aabb≥abba

證明: =

∵a,b r+,當a>b時,>1,a-b>0,>1;

當a≤b時,≤1,a-b≤0, ≥1.

∴ ≥1, 即aabb≥abba

綜合法了解算術平均數和幾何平均數的概念,能用平均不等式證明其它一些不等式

定理1 如果a,b r,那麼a2+b2≥2ab(當且僅當a=b時取"="號)

證明:a2+b2-2ab=(a-b)2≥0

當且僅當a=b時取等號.所以

a2+b2≥2ab(當且僅當a=b時取等號).

定理2 如果a,b,c r+,那麼a3+b3+c3≥3abc(當且僅當a=b=c時取"="號)

證明:∵a3+b3+c3-3abc

=(a+b)3+c3-3a2b-3ab2-3abc

=(a+b+c)(a2+b2+c2-ab-bc-ac)

=(a+b+c)[(a-b)2+(b-c)2+(a-c)2]≥0

∴ a3+b3+c3≥3abc,

很明顯,當且僅當a=b=c時取等號.

例1 已知a,b,c是不全等的正數,求證

a(a2+b2)+b(a2+c2)+c(a2+b2)>6abc.

放縮法這也是分析法的一種特殊情況,它的根據是不等式的傳遞性—

a≤b,b≤c,則a≤c,只要證明"大於或等於a的"b≤c就行了.

例,證明當k是大於1的整數時,,

我們可以用放縮法的一支——"逐步放**",證明如下:

分析法從要證明的不等式出發,尋找使這個不等式成立的某一"充分的"條件,為此逐步往前追溯(執果索因),一直追溯到已知條件或一些真命題為止.例如要證a2+b2≥2ab我們通過分析知道,使a2+b2≥2ab成立的某一"充分的"條件是a2-2ab+b2≥0,即(a-b)2≥0就行了.由於是真命題,所以a2+b2≥2ab成立.

分析法的證明過程表現為一連串的"要證……,只要證……",最後推至已知條件或真命題

例 求證:

證明:構造圖形證明不等式

例:已知a,b,c都是正數,求證:

+>分析與證明:觀察原不等式中含有a2+ab+b2即a2+b2+ab的形式,聯想到餘弦定理:c2=a2+b2-2ab cosc,為了得到a2+b2+ab的形式,只要c=120°,

這樣:可以看成a,b為鄰邊,夾角為120°的的三角形的第三邊

可以看成b,c為鄰邊,夾角為120°的的三角形的第三邊

可以看成a,c為鄰邊,夾角為120°的的三角形的第三邊

構造圖形如下,

ab=,

bc=,

ac=顯然ab+bc>ac,故原不等式成立.

數形結合法

數形結合是指通過數與形之間的對應轉化來解決問題.數量關係如果借助於圖形性質,可以使許多抽象概念和關係直觀而形象,有利於解題途徑的探求,這通常為以形助數;而有些涉及圖形的問題如能轉化為數量關係的研究,又可獲得簡捷而一般化的解法,即所謂的以數解形.數形結合的思想,其實質是將抽象的數學語言與直觀的圖形結合起來,使抽象思維和形象思維結合,通過對圖形的認識,數形的轉化,可以培養思維的靈活性,形象性.

通過數形結合,可以使複雜問題簡單化,抽象問題具體化.

例.證明,當x>5時,≤x-2

解:令y1=, y2=x-2, 從而原不等式的解集就是使函式y1>y2的x的取值範圍.在同一座標系中分別作出兩個函式的圖象.

設它們交點的橫座標是x0, 則=x0-2>0.解之,得x0=5或x0=1(舍).根據圖形,很顯然成立.

反證法先假定要證不等式的反面成立,然後推出與已知條件(或已知真命題)和矛盾的結論,從而斷定反證假定錯誤,因而要證不等式成立.

窮舉法對要證不等式按已知條件分成各種情況,加以證明(防止重複或遺漏某一可能情況).

注意:在證明不等式時,應靈活運用上述方法,並可通過運用多種方法來提高自己的思維能力.

有關高中不等式的例題

3樓:匿名使用者

例4 解答題

(2)求不等式10(x+4)+x≤84的非負整數解.

分析:對(1)小題中要明白「不小於」即「大於或等於」,用符號表示即為「≥」;(2)小題非負整數,即指正數或零中的整數,所以此題的不等式的解必須是正整數或零.在求解過程中注意正確運用不等式性質.

解: ∴ 120-8x≥84-3(4x+1)

(2)∵10(x+4)+x≤84

∴10x+40+x≤84

∴11x≤44

∴x≤4

因為不大於4的非負整數有0,1,2,3,4五個,所以不等式10(x+4)+x≤84的非負整數解是4,3,2,1,0.

例5 解關於x的不等式

(1)ax+2≤bx-1 (2)m(m-x)>n(n-x)

分析:解字母係數的不等式與解數字係數不等式的方法、步驟都是類似的,只是在求解過程中常要對字母係數進行討論,這就增加了題目的難度.此類問題主要考察了對問題的分析、分類的能力:它不但要知道什麼時候該進行分類討論,而且還要求能準確地分出類別來進行討論(結合例題解法再給與說明).

解:(1)∵ax+2≤bx-1

∴ax-bx≤-1-2

即 (a-b)x≤-3

此時要依x字母係數的不同取值,分別求出不等式的解的形式.

即(n-m)x>n2-m2

當m>n時,n-m<0,∴x<n+m;

當m<n時,n-m>0,∴x>n+m;

當m=n時,n-m=0,n2=m2,n2-m2=0,原不等式無解.這是因為此時無論x取任何值時,不等式兩邊的值都為零,只能是相等的,所以不等式不成立.

例6 解關於x的不等式

3(a+1)x+3a≥2ax+3.

分析:由於x是未知數,所以把a看作已知數,又由於a可以是任意有理數,所以在應用同解原理時,要區別情況,分別處理.

解:去括號,得

3ax+3x+3a≥2ax+3

移項,得

3ax+3x-2ax≥3-3a

合併同類項,得

(a+3)x≥3-3a

(3)當a+3=0,即a=-3,得0·x≥12

這個不等式無解.

說明:在處理字母係數的不等式時,首先要弄清哪乙個字母是未知數,而把其它字母看作已知數,在運用同解原理把未知數的係數化為1時,應作合理的分類,逐一討論.

例7 m為何值時,關於x的方程3(2x-3m)-2(x+4m)=4(5-x)的解是非正數.

分析:根據題意,應先把m當作已知數解方程,然後根據解的條件列出關於m的不等式,再解這個不等式求出m的值或範圍.注意:「非正數」是小於或等於零的數.

解:由已知方程有6x-9m-2x-8m=20-4x

可解得 8x=20+17m

已知方程的解是非正數,所以

例8 若關於x的方程5x-(4k-1)=7x+4k-3的解是:(1)非負數,(2)負數,試確定k的取值範圍.

分析:要確定k的範圍,應將k作為已知數看待,按解一元一次方程的步驟求得方程的解x(用k的代數式表示之).這時再根據題中已知方程的解是非負數或是負數得到關於k的不等式,求出k的取值範圍.這裡要強調的是本題不是直接去解不等式,而是依已知條件獲得不等式,屬於不等式的應用.

解:由已知方程有5x-4k+1=7x+4k-3

可解得 -2x=8k-4

即 x=2(1-2k)

(1)已知方程的解是非負數,所以

(2)已知方程的解是負數,所以

例9 當x在什麼範圍內取值時,代數式-3x+5的值:

(1)是負數 (2)大於-4

(3)小於-2x+3 (4)不大於4x-9

分析:解題的關鍵是把「是負數」,「大於」,「小於」,「不大於」等文字語言準確地翻譯成數字符號.

解:(1)根據題意,應求不等式

-3x+5<0的解集

解這個不等式,得

(2)根據題意,應求不等式

-3x+5>-4的解集

解這個不等式,得

x<3所以當x取小於3的值時,-3x+5的值大於-4.

(3)根據題意,應求不等式

-3x+5<-2x+3的解集

-3x+2x<3-5

-x<-2

x>2所以當x取大於2的值時,-3x+5的值小於-2x+3.

(4)根據題意,應求不等式

-3x+5≤4x-9的解集

-3x-4x≤-9-5

-7x≤-14

x≥2所以當x取大於或等於2的值時,-3x+5的值不大於4x-9.

例10分析:

解不等式,求出x的範圍.

解: 說明:應用不等式知識解決數學問題時,要弄清題意,分析問題中數量之間的關係,正確地表示出數學式子.如「不超過」即為「小於或等於」,「至少小2」,表示不僅少2,而且還可以少得比2更多.

例11 三個連續正整數的和不大於17,求這三個數.

分析:解:設三個連續正整數為n-1,n,n+1

根據題意,列不等式,得

n-1+n+n+1≤17

所以有四組:1、2、3;2、3、4;3、4、5;4、5、6.

說明:解此類問題時解集的完整性不容忽視.如不等式x<3的正整數解是1、2,它的非負整數解是0、1、2.

例12 將18.4℃的冷水加入某種電熱淋浴器內,現要求熱水溫度不超過40℃,如果淋浴器每分鐘可把水溫上公升0.9℃,問通電最多多少分鐘,水溫才適宜?

分析:設通電最多x分鐘,水溫才適宜.則通電x分鐘水溫上公升了0.9x℃,這時水溫是(18.

4+0.9x)℃,根據題意,應列出不等式18.4+0.

9x≤40,解得,x≤24.

答案:通電最多24分,水溫才適宜.

說明:解答此類問題時,對那些不確定的條件一定要充分考慮,並「翻譯」成數學式子,以免得出失去實際意義或不全面的結論.

例13 礦山爆破時,為了確保安全,點燃引火線後,人要在爆破前轉移到300公尺以外的安全地區.引火線燃燒的速度是0.8釐公尺/秒,人離開速度是5公尺/秒,問引火線至少需要多少釐公尺?

解:設引火線長為x釐公尺,

根據題意,列不等式,得

解之得,x≥48(釐公尺)

答:引火線至少需要48釐公尺.

*例14 解不等式|2x+1|<4.

解:把2x+1看成乙個整體y,由於當-4<y<4時,有|y|<4,即-4<2x+1<4,

巧解一元一次不等式

怎樣才能正確而迅速地解一元一次不等式?現結合例項介紹一些技巧,供參考.

1.巧用乘法

例1 解不等式0.25x>10.5.

分析 因為0.25×4=1,所以兩邊同乘以4要比兩邊同除以0.25來得簡便.

解 兩邊同乘以4,得x>42.

2.巧用對消法

例2 解不等式

解 原不等式變為

3.巧用分數加減法法則

故 y<-1.

4.逆用分數加減法法則

解 原不等式化為

, 5.巧用分數基本性質

例5 解不等式

約去公因數2後,兩邊的分母相同;②兩個常數項移項合併得整數.

例6 解不等式

分析 由分數基本性質,將分母化為整數和去分母一次到位可避免繁瑣的運算.

解 原不等式為

整理,得8x-3-25x+4<12-10x,

思考:例5可這樣解嗎?請不妨試一試.

6.巧去括號

去括號一般是內到外,即按小、中、大括號的順序進行,但有時反其道而行之即由外到內去括號往往能另闢捷徑.

7.逆用乘法分配律

例8 解不等式

278(x-3)+351(6-2x)-463(3-x)>0.

分析 直接去括號較繁,注意到左邊各項均含有因式x-3而逆用分配律可速解此題.

解 原不等式化為

(x-3)(278-351×2+463)>0,

即 39(x-3)>0,故x>3.

8.巧用整體合併

例9 解不等式

3{2x-1-[3(2x-1)+3]}>5.

解 視2x-1為一整體,去大、中括號,得3(2x-1)-9(2x-1)-9>5,整體合併,得-6(2x-1)>14,

9.巧拆項

例10 解不等式

分析 將-3拆為三個負1,再分別與另三項結合可巧解本題.

解 原不等式變形為

得x-1≥0,故x≥1.

練習題解下列一元一次不等式

③3{3x+2-[2(3x+2)-1]}≥3x+1.

答案回答者:匿名 7-31 09:24

關於不等式的

這應該是標準的求解不等式的應用,我們可以先根據已知條件列出等式,看看等式後會有什麼啟發 假設矩形水塘的長為x公尺,寬為y公尺.那麼顯然xy 10000.加上路面之後的長和寬分別是x 4,y 4,因為是四周都是2公尺,所以每個邊長都多4公尺。那麼佔用農田的面積顯然就是加上路之後的面積,s x 4 y ...

解關於x的不等式 x ax a,解關於x的不等式 x a x a

x a x a 6 x a 6 x a 然後,化簡,得x 3 因為x和a的正負未知,所以,需要考慮四種組合情況。1 當x a 0,x a 0時,x a x a x a x a 6,2x 6,x 3 2 當x a 0,x a 0時,x a x a x a x a 6,2x 6,x 3 3 當x a 0...

關於乙個不等式問題?不等式的問題?

是的,要分類討論。乙個最簡單的例子 x的平方大於1 直覺上看是 x 1 但實際上 x 1也行。分類討論 滿意望。x x 2 0,說明x和x 2同號 同時為正,或者同時為負 分別討論 1 同時為正,則 x 0 x 2,交集是x 2 2 同時為負,則x 0,x 2,交集是x 0所以最後的解是x 0,與x...