冪級數求和問題,冪級數求和問題,求其詳細運算過程。

2021-03-04 05:24:45 字數 2198 閱讀 1413

1樓:蘇規放

若有疑問,歡迎追問;

若滿意,敬請採納。

認認真真解答題目,很費時費神,請諒解。

冪級數求和問題,求其詳細運算過程。

2樓:等待的幸福快樂

視問題而定,並不是所有的冪級數都能求出和的!

一般的冪級數求和都是對冪級數積分或求導或乘除x,得到乙個可以求和的級數,求出和函式後再還原出原冪級數的和函式!

有些冪級數要用到泰勒級數或傅利葉級數的某些結論,甚至有些要用到復變函式的結論,雖然如此,仍然有很多冪級數的和函式是求不出來的!

例如:1 )f(x)= ∑(-1)^(n-1) x^(2n-1)/(2n-1)

f'(x)=∑(-1)^(n-1) x^(2n-2)=1/(1+x^2)

f(0)=0

積分得 f(x)=f(0)+ ∫【0到x】dt/(1+t^2) =arctanx

2)f(x)= ∑n(n+1)x^(n-1)

積分兩次得 ∑x^(n+1)=x^2/(1-x)=

再求導兩次即可得f(x)=2/(1-x)^3

原式=2x/(1-x)^3

3)求導得 ∑(x+1)^(n-1)/2^n=(1/2)∑[(x+1)/2]^(n-1)=(1/2)/[1-(x+1)/2]=1/(1-x)

f=-ln(1-x)+c

f(-1)=0 c=ln2

f=ln2-ln(1-x)

高等數學 所給的冪級數 求和函式!!

3樓:何度千尋

冪級數是微積分中十分重要的內容之一,而求冪級數的和函式是一類難度較高、技巧性較強的問題。求解冪級數的和函式時,常通過冪級數的有關運算(恒等變形或分析運算)把待求級數化為易求和的級數(即常用級數,特別是幾何級數),求出轉化後的冪級數和函式後,再利用上述運算的逆運算,求出待求冪級數的和函式。

以下總結了冪級數求和函式問題的四種常見型別:

一、通過恒等變形化為常用級數的冪級數求和函式s(x)

計算冪級數的和函式,首先要記牢常用級數的和函式,再次基礎上借助四則運算、變數代換、拆項、分解、標號代換等恒等變形手段將待求級數化為常用級數的標準形式來求和函式。

二、求通項為p(n)x^n的和函式,其中p(n)為n的多項式

解法1、用先逐項積分,再逐項求導的方法求其和函式。積分總是從收斂中心到x積分。

解法2、也可化為幾何級數的和函式的導數而求之,這是不必再積分。

三、求通項為x^n/p(n)的和函式,其中p(n)為n的多項式

解法1、對級數先逐項求導,再逐項積分求其和函式,積分時不要漏掉s(0)的值。

解法2、也可化為幾何級數的和函式的積分求之。

四、含階乘因子的冪級數

(1)分解法:將冪級數一般項進行分解等恒等變形,利用e^x、sinx、cosx的冪級數式求其和函式。一般分母的階乘為n!

的冪級數常用e^x的式來求其和函式,分母的階乘為(2n+1)!或(2n)!的冪級數常用sinx、cosx的式來求其和函式

(2)逐項求導、逐項積分法

(3)微分方程發:含階乘因子的冪級數的和函式常用解s(x)滿足的微分方程的處之問題而求之。因此先求收斂域,求出和函式的各階導數以及在點0處的值,建立s(x)的長微分方程的初值問題,求解即得所求和函式

題中的型別為第二種型別

4樓:匿名使用者

積分二次轉化為等比級數再求導二次,望採納。

5樓:匿名使用者

^記 s(x) = ∑

∞> n(n+1)x^n

得 t(x) = ∫ <0,x>s(t)dt = ∑n ∫<0,x>(n+1)t^n

= ∑nx^(n+1)

= ∑(n+2)x^(n+1) - 2∑x^(n+1)

= ∑(n+2)x^(n+1) - 2x^2/(1-x) (-1t(t)dt = ∑x^(n+2) - 2 ∫ <0,x> t^2dt/(1-t)

= x^3/(1-x) - 2 ∫ <0,x> t^2dt/(1-t) = -x^2-x-1+1/(1-x) - 2 ∫ <0,x> t^2dt/(1-t),

於是 t(x) = u'(x) = -2x-1+1/(1-x)^2-2x^2/(1-x) = 1-1/(1-x)+1/(1-x)^2

s(x) = t'(x) = -1/(1-x)^2+2/(1-x)^3 = (1+x)/(1-x)^3 (-1

冪級數求和函式的思路步驟是什麼冪級數求和函式的過程就是脫掉符號的過程?

常用函式成的冪級數,如e的x次方,1 1 x,sinx,cosx等,將要求的冪級數向熟悉的幾個形式轉換,一般答案是幾個常用和函式的變形或組合。注意n從幾開始取值,少了哪幾項,巧妙變換n的初始值,運用等比數列的求和公式等等 x 2n 2 n x 2 n,令x 2 t,級數求和來就變為 t n 1 1 ...

冪級數求和時x和n誰是可變的,為什麼冪級數求和xn有時候等於

兩個都可以改變 計算和函式時,通常改變x的指數,以方便湊微分,湊積分的運算 例如nx n x nx n 1 x d dx x n 例如x n n 1 1 x x n 1 n 1 1 x 0,x x n dx 通常改變n的起始數,以方便代入相應公式,還有缺項,奇偶性等等問題 例如 n 1,x n,但標...

高等數學,冪級數求和函式,怎麼求

解 1 n x 2n n!x 2 n n!對比e x的泰勒式,故,原式 e x 2 選a。供參考。高等數學 所給的冪級數 求和函式!冪級數是微積分中十分重要的內容之一,而求冪級數的和函式是一類難度較高 技巧性較強的問題。求解冪級數的和函式時,常通過冪級數的有關運算 恒等變形或分析運算 把待求級數化為...