線性代數矩陣,線性代數中,矩陣,A是什麼意思?

2021-03-04 05:21:38 字數 3502 閱讀 4769

1樓:匿名使用者

可以,x=e+2*  (a-2e)的逆矩陣從原題,可直接推出 x=(a-2e)的逆矩陣  *  a。

經驗證,兩種計算方法得到的結果是一樣的,不同的是第一種方法不需要計算兩個矩陣的乘法。

無論如何,想得到x,(a-2e)的逆矩陣肯定是要計算的。

2樓:一穀水

可以的,再求(a-2e)的逆陣即可

線性代數中,矩陣,a*是什麼意思?

3樓:匿名使用者

矩陣a*表示a矩陣的伴隨矩陣。

伴隨矩陣的定義:某矩陣a各元素的代數余子式,組成乙個新的矩陣後再進行一下轉置,叫做a的伴隨矩陣。

某元素代數余子式就是去掉矩陣中某元素所在行和列元素後的形成矩陣的行列式,再乘上-1的(行數+列數)次方。

伴隨矩陣的求發:當矩陣是大於等於二階時:

主對角元素是將原矩陣該元素所在行列去掉再求行列式。

非主對角元素是原矩陣該元素的共軛位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y為該元素的共軛位置的元素的行和列的序號,序號從1開始的。

主對角元素實際上是非主對角元素的特殊情況,因為x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正數,沒必要考慮主對角元素的符號問題。

4樓:匿名使用者

你只要知道他是表示伴隨矩陣。對於什麼是伴隨矩陣,一樓已經講清楚了,

我不想再羅嗦,但是說實話,這個定義沒有用,做了這麼多題目了,就伴隨從來沒有用這個定義來做過。注意,你要掌握的是:a的逆=a*除以|a|.用這個公式來求解a*

5樓:jc飛翔

a*是伴隨矩陣

a的余子矩陣是乙個n×n的矩陣c,使得其第i 行第j 列的元素是a關於第i 行第j 列的代數余子式。 引入以上的概念後,可以定義:矩陣a的伴隨矩陣是a的余子矩陣的轉置矩陣。

6樓:夢裡尋它千百回

假設a代表乙個矩陣,它有n行n列。取出a中第一行第一列,剩餘元素構成行列式的值是a*的第一行第一列的元素;同理,a除去第一行第二列的行列式的值是a*的第二行第一列的元素值;...以此類推得到a*,叫做a的伴隨矩陣。

線性代數 矩陣a~b什麼意思

7樓:demon陌

對n階方陣a、b,若存在可逆矩陣p,使得p^(-1)ap=b,則稱a、b相似。

從定義出發,最簡單的充要條件即是:對於給定的a、b,能夠找到這樣的乙個p,使得:

p^(-1)ap=b;或者:能夠找到乙個矩陣c,使得a和b均相似於c。

進一步地,如果a、b均可相似對角化,則他們相似的充要條件為:a、b具有相同的特徵值。

再進一步,如果a、b均為實對稱矩陣,則它們必可相似對角化,可以直接計算特徵值加以判斷(與2情況不同的是:2情況必須首先判斷a、b可否相似對角化)。

擴充套件資料:

n階矩陣a與對角矩陣相似的充分必要條件為矩陣a有n個線性無關的特徵向量。

注: 定理的證明過程實際上已經給出了把方陣對角化的方法。

若矩陣可對角化,則可按下列步驟來實現:

(1) 求出全部的特徵值;

(2)對每乙個特徵值,設其重數為k,則對應齊次方程組的基礎解系由k個向量構成,即為對應的線性無關的特徵向量;

(3)上面求出的特徵向量恰好為矩陣的各個線性無關的特徵向量。

判斷兩個矩陣是否相似的輔助方法:

(1)判斷特徵值是否相等;

(2)判斷行列式是否相等;

(3)判斷跡是否相等;

(4)判斷秩是否相等。

以上條件可以作為判斷矩陣是否相似的必要條件,而非充分條件。

(兩個矩陣若相似於同一對角矩陣,這兩個矩陣相似。)

8樓:猶金生邱鳥

1、相似的定義為:對n階方陣a、b,若存在可逆矩陣p,使得p^(-1)ap=b,則稱a、b相似.

2、從定義出發,最簡單的充要條件即是:對於給定的a、b,能夠找到這樣的乙個p,使得:

p^(-1)ap=b;或者:能夠找到乙個矩陣c,使得a和b均相似於c.

3、進一步地,如果a、b均可相似對角化,則他們相似的充要條件為:a、b具有相同的特徵值.

4、再進一步,如果a、b均為實對稱矩陣,則它們必可相似對角化,可以直接計算特徵值加以判斷(與2情況不同的是:2情況必須首先判斷a、b可否相似對角化).

5、以上為線性代數涉及到的知識,而如果你也學過矩陣論,那麼a、b相似的等價條件還有:

設:a、b均為n階方陣,則以下命題等價:

(1)a~b;

(2)λe-a≌λe-b

(3)λe-a與λe-b有相同的各階行列式因子

(4)λe-a與λe-b有相同的各階不變因子

(5)λe-a與λe-b有相同的初等因子組

9樓:匿名使用者

~這個符號在矩

陣中表示的是兩個矩陣相似,也就是:

設a,b為n階矩陣,如果有n階非奇異矩陣p存在,使得p^(-1)*a*p=b成立,則稱矩陣a與b相似,記為a~b.

("p^(-1)"表示p的-1次冪,也就是p的逆矩陣, "*" 表示乘號, "~" 讀作"相似於".)

10樓:匿名使用者

消費花兒的解答是錯的 a可以通過初等變換成b是 矩陣a等價於矩陣b 樓主那個是相似

樓上那個回答是對的 相似矩陣的秩相等 還有判斷兩個矩陣是否相似有個充分條件 就是a和b都相似於同乙個對角矩陣 線性代數要多看多背 很容易搞忘記的

11樓:小飛花兒的憂傷

a可以經過初等變換成b

線性代數,矩陣運算

12樓:匿名使用者

ap = p∧, 則 a = p∧p^(-1)(p, e) =

[-1 1 1 1 0 0]

[ 1 0 2 0 1 0]

[ 1 1 -1 0 0 1]

初等行變換為

[ 1 0 2 0 1 0]

[ 0 1 3 1 1 0]

[ 0 1 -3 0 -1 1]

初等行變換為

[ 1 0 2 0 1 0]

[ 0 1 3 1 1 0]

[ 0 0 -6 -1 -2 1]

初等行變換為

[ 1 0 0 -1/3 1/3 1/3][ 0 1 0 1/2 0 1/2]

[ 0 0 1 1/6 1/3 -1/6]p^(-1) =

[-1/3 1/3 1/3]

[1/2 0 1/2]

[1/6 1/3 -1/6]

a^n = p∧p^(-1)p∧p^(-1)p∧p^(-1) ...... p∧p^(-1)p∧p^(-1)

= p∧^np^(-1)

φ(a) = a^3+2a^2-3a = p(∧^3 + 2∧^2-3∧)p^(-1)

= pdiag(0, 10, 0)p^(-1) =[5 0 5]

[0 0 0]

[5 0 5]

線性代數矩陣問題,線性代數,矩陣運算

注意 乙個行列式的值是乙個唯一確定的值,不可能同時對於兩個不同的值。在該題目的條件下 a e 只能是等於0,那麼就不可能等於 1.這是由於你的證明過程本身有問題。正確的證明只要將你證明的前半部分再適當變形就可以了。證明如下證明 因為aat e,且 a 0,所以 a 1從而 a e a aat a e...

線性代數(矩陣)

矩陣的秩為4,解答過程如下 第一步,把第一行和第四行互換 第二步,把第二行所有元素都除以2 第三步,把第二行加到第三行,消去第三行的兩個 1,並且把第二行乘以 1再加到第四行,消去第四行的兩個1 第四步,把第三行加到第四行,消去第四行的 2第五步,矩陣已經是階梯形矩陣,可以看出矩陣的秩為4如果滿意請...

線性代數對角陣問題求解,線性代數問題,求矩陣的對角陣時為什麼要把特徵向量單位化呢?

實對稱矩陣是一定可以相似對角化的,在學習二次型的時候會經常將對稱矩陣對角化 線性代數問題,求矩陣的對角陣時為什麼要把特徵向量單位化呢?因為正交陣的每一列都肯定 是單位陣,所以需要單位化 如果不用正交陣作對角化過程,只用一般的可逆陣,就可以不單位化。線性變換的特徵向量是指在變換下方向不變,或者簡單地乘...