1樓:匿名使用者
^∫dx/(1+√(1-x^2))
x=sinu dx=cosudu √(1-x^2)=cosutan(u/2)=sinu/(1+cosu)=x/(1+√(1-x^2))
=∫cosudu/(1+cosu)
=∫[1-1/(1+cosu)]du
=u-∫du/(1+cosu)
=u-∫d(u/2)/(cos(u/2))^2=u-tan(u/2)+c
=arcsinx - x/(1+√(1-x^2)) +c
2樓:匿名使用者
∫9(cosx)^3)dx=9∫(cos 2;x*cosx)dx =9∫((1-sin 2;x)*cosx)dx =9∫(cosx-(sin 2;x*cosx))dx =9∫cosxdx-∫(
sin 2;x*cosx)
求不定積分∫1/(x+根號(1-x^2))dx? 5
3樓:天使的星辰
|∫dx/[x+√(1-x^2)]
令x=sint
原式=∫cost/(sint+cost) dt=1/2 ∫(cost-sint)/(sint+cost) dt+1/2 ∫(cost+sint)/(sint+cost) dt
=1/2∫1/(sint+cost) d(sint+cost)+1/2∫dt
=1/2ln|sint+cost|+1/2t+ct=arcsinx
cost=√1-x^2
所以原式=1/2ln|x+√(1-x^2)|+1/2arcsinx+c
4樓:最愛他們姓
不好意思,這個問題太深奧了,沒有接觸過呢,沒能給到你滿意的答覆,只能生活愉快,謝謝!
求不定積分∫(1/根號(1+x^2))dx
5樓:匿名使用者
設x=tant
=>dx=d(tant)=sec²tdt
∴∫(1/√(1+x^2))dx
=∫(1/sect)sec²tdt
=∫sectdt
=∫cost/(cost)^2 dt
=∫1/(cost)^2 dsint
=∫1/(1-(sint)^2) dsint令sint = θ化為∫1/(1-θ^2)dθ=(ln|1+x|-ln|1-x|)/2+c
=ln(√((1+θ)/(1-θ)))+c=ln|sect+tant|+c
=lnl√(1+tan^2t)+tantl+c=lnl√(1+x^2)+xl+c
6樓:匿名使用者
設x=tanθ,能化簡,而且化得很簡!加油
用換元法求不定積分 ∫ dx/1+根號(1-x^2)
7樓:丹建設寧煙
你好!解:設x=tanα則√(x²+1)=1/cosα∴原式=∫d(tanα)/(tanα+1/cosα)=∫(1/cos²α)/(tanα+1/cosα)dα=∫(cosα)dα/(sinαcos²α+cos²α)=∫d(sinα)/【sinα(1-sin²α)+1-sin²α】=-1/【2(sinα+1)】-1/4ln〡(sinα-1)/(sinα+1)〡+c
由於sinα=x/(√(x²+1)),所以原式=-1/【2(x/√(x²+1))+2】-1/4ln〡(x/(√(x²+1))-1)/(x/(√(x²+1))+1)〡
+c終於做完了!
不明白請追問,有幫助請採納!
∫1/(1+√1-x^2)dx,求不定積分
8樓:drar_迪麗熱巴
解題過程如下圖:
在微積分中,乙個函式f 的不定積分,或原函式,或反導數,是乙個導數等於f 的函式 f ,即f ′ = f。
不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
9樓:匿名使用者
可以用三角換元法,自己試下,我給你一種不一樣的解答吧。
以上,請採納。
10樓:所示無恆
解答步驟如圖:
連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。
求不定積分1/1+根號下x dx
11樓:惜君者
令√x=t,則x=t²,dx=2tdt
故原式=2∫t/(1+t) dt
=2∫(t+1-1)/(t+1) dt
=2∫[1- 1/(t+1)]dt
=2t-2ln(t+1)+c
=2√x-2ln(√x+1)+c
12樓:匿名使用者
^||√let
x= tanu
dx=(secu)^2 du
∫√(1+x^2)/x dx
=∫ [secu/tanu] [(secu)^2 du]=∫ [(secu)^3/tanu ] du=∫ du/[ sinu. (cosu)^2 ]=∫ cscu dtanu
= cscu.tanu + ∫ tanu. cscu.
cotu du= (1/cosu) + ∫ cscu du= (1/cosu) + ln|cscu- cotu| + c= √(1+x^2) + ln|√(1+x^2)/x -1/x | + c
13樓:老伍
解:令 √
x-1=t 則x=(t+1)² dx=2(t+1)dt∫x/(√x-1)dx=∫(t+1)²/t*2(t+1)dt=2∫(t³+3t+3+1/t)dt
=2t³/3+3t² +6t+2lnt+c
求1/根號(1+x^2) 的原函式
14樓:瑾
1/根號
抄(1+x^2) 的原函式,答案如下:
求1/根號(1+x^2) 的原函式就是求函式1/根號(1+x^2) 對x的積分。
求1/根號(1+x^2) 的原函式,用」三角替換」消掉根號(1+x^2)。
15樓:yang天下大本營
令x=tanθ,copy-π/2<θbai<π/2
即dx=secθ^2*dθ
則∫(1/√
du1+x^2)dx
=∫(1/√(1+tanθ^2)*secθ^2*dθ=∫(1/cosθ)dθ
=∫[cosθ/(cosθ)
zhi^2]dθ
=∫1/[1-(sinθ)^2]d(sinθ)=1/2*ln[(1-sinθ)/(1+sinθ)]+c=ln[x+√(1+x^2)]+c(c為常dao數)求1/根號(1+x^2) 的原函式就是求函式1/根號(1+x^2) 對x的積分。
求1/根號(1+x^2) 的原函式,用」三角替換」消掉根號(1+x^2)。
16樓:匿名使用者
^求1/根號(1+x^2) 的原函式就是求函式1/根號(1+x^2) 對x的積分
(1)函式版f(x)的不定積分
設f(x)是函式f(x)的乙個原函式,權
我們把函式f(x)的所有原函式f(x)+ c(其中,c為任意常數)叫做函式f(x)的不定積分,又叫做函式f(x)的反導數,記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。
其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。
(2)求1/根號(1+x^2) 的原函式
用」三角替換」消掉根號(1+x^2)
令x=tanθ,-π/2<θ<π/2
即dx=secθ^2*dθ
則∫(1/√1+x^2)dx
=∫(1/√(1+tanθ^2)*secθ^2*dθ=∫(1/cosθ)dθ
=∫[cosθ/(cosθ)^2]dθ
=∫1/[1-(sinθ)^2]d(sinθ)=1/2*ln[(1-sinθ)/(1+sinθ)]+c=ln[x+√(1+x^2)]+c
17樓:匿名使用者
我真的服氣,採納的答案倒數二步ln裡面的分子分母弄反了,我也不知道那麼多人怎麼就得出正確結果了,瑪德智障
18樓:匿名使用者
^請問你的這個題
bai目要求在什麼知識範圍du內zhi解答大學的方法比較簡dao單
對1//根號(1+x^2) 關於x積分就內行了∫(1/√容1+x^2)dx
令x=tanθ,-π/2<θ<π/2,則
∫(1/√1+x^2)dx =∫(1/cosθ)dθ,-π/2<θ<π/2
∫(1/cosθ)dθ=∫[cosθ/(cosθ)^2]dθ=∫1/[1-(sinθ)^2]dθ
如果你上大學的話 後面的過程很簡單了 懶得打字了∫1/[1-(sinθ)^2]dθ=1/2*ln[(1-sinθ)/(1+sinθ)]+c
後面你把sinθ的轉換成tanθ,然後把x替換進去原函式為ln(x+√1+x^2)+c (c是常數)
19樓:匿名使用者
是高中的麼?
原函式與反函式
設那一堆等於y 然後用y來表示x (也就是讓等號一邊只有x) 算出來的式子再把x和y位置交換就行了 注意一開始x的定義域,這裡嘛沒什麼問題
不定積分下1根號下x2a2dx
令x atanu,則u arctan x a 1 x a dx 1 a tan u a d atanu cosu sec udu secudu ln secu tanu c ln x a a x a c ln x a x a c 求1 根號下a 2 x 2 dx a 0的不定積分 1 a 2 x 2...
換元法求不定積分1根號x22x5dx
原式 1 copy x 1 2 4 d x 1 設x 1 2tant,bait actan x 1 2 則 du x 1 2 4 4 tan2t 1 4sec2t 2sect,d x 1 2sec2tdt 原式 zhi1 x 1 2 4 d x 1 1 2sect 2sec2tdt sectdt l...
求積分根號x1根號x,求下列不定積分根號x11根號x11dx
解 bai 令 dux u,則x u zhi daox 1 x dx u 1 u d u 2 u 1 u du 2 u 1 1 1 u du 2 u 1 u 1 1 1 u du 2 u 1 1 1 u du 2 u 1 du 2 1 1 u d 1 u 2 u u 2ln 1 u c u 2u 2...