求不定積分x25x2dx,求不定積分x1xx2dx

2021-03-04 05:51:05 字數 6458 閱讀 5725

1樓:體育wo最愛

∫x/√

(2+5x²)dx

=(1/2)∫[1/√(2+5x²)]d(x²)=(1/10)∫[1/√(2+5x²)]d(2+5x²)=(1/10)×2×√(2+5x²)+c

=(1/5)×√(2+5x²)+c

求不定積分∫x/√(1+x+x^2)dx

2樓:匿名使用者

||x^2+x+1 = (x+1/2)^2+ 3/4

letx+1/2 = (√

3/2)tanu

dx =(√3/2)(secu)^2 du

∫x/√(1+x+x^2)dx

=(1/2)∫(2x+1)/√(1+x+x^2)dx -(1/2)∫dx/√(1+x+x^2)

=√(1+x+x^2) -(1/2)∫dx/√(1+x+x^2)

=√(1+x+x^2) -(1/2)∫ secu du

=√(1+x+x^2) -(1/2)ln|secu + tanu| + c'

=√(1+x+x^2) -(1/2)ln|(2/√3)√(1+x+x^2) + (2x+1)/√3 | + c'

=√(1+x+x^2) -(1/2)ln|2√(1+x+x^2) + (2x+1)| + c

求不定積分∫(1/x^2+2x+5)dx

3樓:等待楓葉

解:∫1/(x^2+2x+5)dx

=∫1/((x+1)^2+4)dx

令x+1=2tant,則x=2tant-1那麼,∫1/(x^2+2x+5)dx

=∫1/((x+1)^2+4)dx

=∫1/((2tant)^2+4)d(2tant-1)=1/4∫1/(sect)^2d(2tant)=1/2∫dt=t/2+c

又因為x+1=2tant,所以t=arctan((x+1)/2)則∫1/(x^2+2x+5)dx=t/2+c=1/2*arctan((x+1)/2)+c

4樓:寂寞的楓葉

^∫(1/(x^2+2x+5))dx的不定積分為1/2arctan((x+1)/2)+c

解:∫(1/(x^2+2x+5))dx

=∫1/[(x+1)^2+4]dx

=1/4∫1/[((x+1)/2)^2+1]dx

令(x+1)/2=t,則x=2t-1

則1/4∫1/[((x+1)/2)^2+1]dx

=1/4∫1/(t^2+1)d(2t+1)

=1/2∫1/(t^2+1)dt

=1/2arctant+c

把t=(x+1)/2代入,得

∫(1/(x^2+2x+5))dx=1/2arctan((x+1)/2)+c

擴充套件資料:

1、不定積分的公式型別

(1)含a+bx的不定積分

∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c

(2)含x^2±a^2的不定積分

∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c

(3)含ax^2±b的不定積分

∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c

2、不定積分的求解方法

(1)換元積分法

例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c

(2)積分公式法

例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c

(3)分部積分法

例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x

5樓:116貝貝愛

^結果為:(1/2)arctan[(x+1)/2]+ c

解題過程如下:

原式=∫1/(x^2+2x+5)dx

=∫1/[(x+1)^2+4]dx

=∫(1/4)/[ [(x+1)/2]^2+1]dx

=∫(1/4)·2/[ [(x+1)/2]^2+1]d( (x+1)/2)

=(1/2)∫1/[ [(x+1)/2]^2+1]d( (x+1)/2)

=(1/2)arctan[(x+1)/2]+ c

求函式積分的方法:

設f(x)是函式f(x)的乙個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。

若f(x)在[a,b]上恒為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。

常用積分公式:

6樓:匿名使用者

∫1/(x^2+2x+5)dx

=∫1/[(x+1)^2+4]dx

=∫(1/4)/[ [(x+1)/2]^2+1]dx=∫(1/4)·2/[ [(x+1)/2]^2+1]d( (x+1)/2)

=(1/2)∫1/[ [(x+1)/2]^2+1]d( (x+1)/2)

=(1/2)arctan[(x+1)/2]+ c上面對你搜到的答案進行了細化。

主要還是利用公式:∫[1/(x^2 +1)]dx=arctan(x) +c,本題中配方後,後面出現4,不是1,因此要通過變形,構造成滿足公式的形式。你搜到的答案倒數第二步寫得不清楚,所以難以理解。

7樓:匿名使用者

^把(x+1)做為乙個整體 即令x+1=t∫1/[(x+1)^2+2^2]d(x+1)=∫1/(t^2+2^2)dt

=1/2∫1/[t/2)^2+1]d(t/2)=(1/2)arctan(t/2)+c

代回t=x+1

=(1/2)arctan[(x+1)/2]+c

8樓:

^∫1/(x^2+2x+5)dx

=∫1/[(x+1)^2+4]dx

分子分母同除以4

=∫(1/4)/[(x/2+1/2)^2+1]dx=(1/4)*2∫1/[(x/2+1/2)^2+1]d(x/2+1/2)

=1/2∫1/[(x/2+1/2)^2+1]d(x/2+1/2)=1/2arctan[(x+1)/2]+c明白?可繼續問.

附:arctanx'=1/(1+x^2)

9樓:笑年

=∫1/[(x+1)^2+2^2]d(x+1)=∫1/2^2d(x+1) 在分母把2^2提出來=1/4∫1/d(x+1)

=1/2∫1/d(x+1)/2

=(1/2)arctan[(x+1)/2]+c ( 有公式 (arctanx)'=1/(x^2+1) )

10樓:帥哥靚姐

∫1/(x²+2x+5)dx

=∫1/[(x+1)²+4]dx

=∫1/[(x+1)²+2²]d(x+1)=∫(1/4)/([(x+1)/2]²+1)=(1/2)∫d[(x+1)/2]/([(x+1)/2]²+1)=(1/2)arctan[(x+1)/2]+c

11樓:匿名使用者

第二步就配平方,第三步換元,

∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + c

12樓:匿名使用者

微分裡面需要湊成d(x+1)/2

求不定積分∫x/√(1+x-x^2)dx

13樓:等待楓葉

|不定積分∫x/(x^2-x-2 )dx的結果為2/3*ln|x-2|+1/3ln|x+1|+c。

解:因為x/(x^2-x-2)=x/((x-2)*(x+1)),

令x/((x-2)*(x+1))=a/(x-2)+b/(x+1)=(ax+a+bx-2b)/((x-2)*(x+1)),

可得a=2/3,b=1/3。那麼,

∫x/(x^2-x-2)dx

=∫x/((x-2)*(x+1))dx

=∫(2/(3*(x-2))+1/(3*(x+1)))dx

=2/3*∫1/(x-2)dx+1/3∫1/(x+1)dx

=2/3*ln|x-2|+1/3*ln|x+1|+c

擴充套件資料:

1、因式分解的方法

(1)十字相乘法

對於x^2+px+q型多項式,若q可分解因數為q=a*b,且有a+b=p,那麼可應用十字相乘法對多項式x^2+px+q進行因式分解。

x^2+px+q=(x+a)*(x+b)

(2)公式法

平方差公式,a^2-b^2=(a+b)*(a-b)。

完全平方和公式,a^2+2ab+b^2=(a+b)^2。

完全平方差公式,a^2-2ab+b^2=(a-b)^2。

2、不定積分湊微分法

通過湊微分,最後依託於某個積分公式。進而求得原不定積分。

例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+c

直接利用積分公式求出不定積分。

3、不定積分公式

∫mdx=mx+c、∫1/xdx=ln|x|+c、∫cscxdx=-cotx+c

14樓:寂寞的楓葉

^∫x/(x^2-2ax+1)dx的不定積分為1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

解:∫x/(x^2-2ax+1)dx

=1/2*∫(2x-2a+2a)/(x^2-2ax+1)dx

=1/2*∫(2x-2a)/(x^2-2ax+1)dx+∫a/(x^2-2ax+1)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+∫a/(x^2-2ax+1)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a*∫1/((x-a)^2+1-a^2)dx

=1/2*∫1/(x^2-2ax+1)d(x^2-2ax+1)+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

令(x-a)/√(1-a^2)=tant,則x=√(1-a^2)*tant+a,那麼

∫1/(((x-a)/√(1-a^2))^2+1)dx

=∫1/(sect)^2d(√(1-a^2)*tant+a)

=√(1-a^2)*∫(sect)^2/(sect)^2dt

=√(1-a^2)*∫1dt

=√(1-a^2)*t+c

又(x-a)/√(1-a^2)=tant,則t=arctan((x-a)/√(1-a^2)),則

∫1/(((x-a)/√(1-a^2))^2+1)dx

=√(1-a^2)*t+c

=√(1-a^2)*arctan((x-a)/√(1-a^2))+c

所以∫x/(x^2-2ax+1)dx

=1/2*ln|(x^2-2ax+1|+a/(1-a^2)*∫1/(((x-a)/√(1-a^2))^2+1)dx

=1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

即∫x/(x^2-2ax+1)dx的不定積分為:

1/2*ln|(x^2-2ax+1|+a/√(1-a^2)*arctan((x-a)/√(1-a^2))+c

擴充套件資料:

1、不定積分的公式型別

(1)含ax^2±b的不定積分

∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c

(2)含a+bx的不定積分

∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c

(3)含x^2±a^2的不定積分

∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c

2、不定積分的求解方法

(1)換元積分法

例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c

(2)積分公式法

例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c

(3)分部積分法

例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x

3、常用的積分公式

∫(secx)^2dx=tanx+c、∫1/(x^2+x+1)d(x^2+x+1)=ln|x^2+x+1|+c、積分5dx=5x+c

求不定積分x2a2x2dx

令x asint,則dx acost dt x a x dx a sin t acost acostdt a sin t dt a 1 cos2t 2 dt a 1 2dt a cos2tdt a t 2 1 2 a sin2t c 1 2 a arcsin x a x a x c 求不定積分 x ...

x25x9x25x6dx求不定積分

x 5x cosxdx x 5x dsinx x 5x sinx sinxd x 5x x 5x sinx 2x 5 sinxdx x 5x sinx 2x 5 dcosx x 5x sinx 2x 5 cosx cosxd 2x 5 x 5x sinx 2x 5 cosx 2 cosxdx x 5...

求不定積分x根號下x2dx

x根號下 x 2 dx的不定bai積分是ln dux 1 x 2x c。zhidx x x 2 dx x2 2x dx x 1 2 1 ln x 1 x2 2x c公式 dx x2 a2 ln x x2 a2 所以dao x根號內 下 x 2 dx的不定積分是ln x 1 x 2x c。詳細過程如圖...