不定積分1x22x5求過程謝謝

2021-03-04 05:51:05 字數 4736 閱讀 6962

1樓:匿名使用者

^x^2+2x+5=(x+1)^2+4

letx+1= 2tany

dx=2(secy)^2.dy

∫dx/(x^2+2x+5)

=(1/2)∫dy

=(1/2)y + c

=(1/2)arctan[(x+1)/2] + c

2樓:我不是他舅

原式=∫dx/[(x+1)²+4]

=1/4*∫dx/[(x+1)²/4+1]=1/4*∫2d(x/2+1/2)/[(x/2+1/2)²+1]=1/2*arctan(x/2+1/2)+c

求不定積分∫(x/x^2+2x+5)dx解答詳細過程 謝謝

3樓:demon陌

具體回答如圖:

連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

4樓:匿名使用者

∫1/(x^2+2x+5)dx =∫1/[(x+1)^2+4]dx =∫1/[(x+1)^2+2^2]d(x+1) =(1/2)arctan[(x+1)/2]+c

求不定積分∫(1/x^2+2x+5)dx,要過程 謝謝

5樓:匿名使用者

∫1/(x^2+2x+5)dx

=∫1/[(x+1)^2+4]dx

=∫1/[(x+1)^2+2^2]d(x+1)=(1/2)arctan[(x+1)/2]+c

求不定積分∫(1/x^2+2x+5)dx

6樓:等待楓葉

解:∫1/(x^2+2x+5)dx

=∫1/((x+1)^2+4)dx

令x+1=2tant,則x=2tant-1那麼,∫1/(x^2+2x+5)dx

=∫1/((x+1)^2+4)dx

=∫1/((2tant)^2+4)d(2tant-1)=1/4∫1/(sect)^2d(2tant)=1/2∫dt=t/2+c

又因為x+1=2tant,所以t=arctan((x+1)/2)則∫1/(x^2+2x+5)dx=t/2+c=1/2*arctan((x+1)/2)+c

7樓:寂寞的楓葉

^∫(1/(x^2+2x+5))dx的不定積分為1/2arctan((x+1)/2)+c

解:∫(1/(x^2+2x+5))dx

=∫1/[(x+1)^2+4]dx

=1/4∫1/[((x+1)/2)^2+1]dx

令(x+1)/2=t,則x=2t-1

則1/4∫1/[((x+1)/2)^2+1]dx

=1/4∫1/(t^2+1)d(2t+1)

=1/2∫1/(t^2+1)dt

=1/2arctant+c

把t=(x+1)/2代入,得

∫(1/(x^2+2x+5))dx=1/2arctan((x+1)/2)+c

擴充套件資料:

1、不定積分的公式型別

(1)含a+bx的不定積分

∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c

(2)含x^2±a^2的不定積分

∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c

(3)含ax^2±b的不定積分

∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c

2、不定積分的求解方法

(1)換元積分法

例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c

(2)積分公式法

例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c

(3)分部積分法

例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x

8樓:116貝貝愛

^結果為:(1/2)arctan[(x+1)/2]+ c

解題過程如下:

原式=∫1/(x^2+2x+5)dx

=∫1/[(x+1)^2+4]dx

=∫(1/4)/[ [(x+1)/2]^2+1]dx

=∫(1/4)·2/[ [(x+1)/2]^2+1]d( (x+1)/2)

=(1/2)∫1/[ [(x+1)/2]^2+1]d( (x+1)/2)

=(1/2)arctan[(x+1)/2]+ c

求函式積分的方法:

設f(x)是函式f(x)的乙個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。

若f(x)在[a,b]上恒為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。

常用積分公式:

9樓:匿名使用者

∫1/(x^2+2x+5)dx

=∫1/[(x+1)^2+4]dx

=∫(1/4)/[ [(x+1)/2]^2+1]dx=∫(1/4)·2/[ [(x+1)/2]^2+1]d( (x+1)/2)

=(1/2)∫1/[ [(x+1)/2]^2+1]d( (x+1)/2)

=(1/2)arctan[(x+1)/2]+ c上面對你搜到的答案進行了細化。

主要還是利用公式:∫[1/(x^2 +1)]dx=arctan(x) +c,本題中配方後,後面出現4,不是1,因此要通過變形,構造成滿足公式的形式。你搜到的答案倒數第二步寫得不清楚,所以難以理解。

10樓:匿名使用者

^把(x+1)做為乙個整體 即令x+1=t∫1/[(x+1)^2+2^2]d(x+1)=∫1/(t^2+2^2)dt

=1/2∫1/[t/2)^2+1]d(t/2)=(1/2)arctan(t/2)+c

代回t=x+1

=(1/2)arctan[(x+1)/2]+c

11樓:

^∫1/(x^2+2x+5)dx

=∫1/[(x+1)^2+4]dx

分子分母同除以4

=∫(1/4)/[(x/2+1/2)^2+1]dx=(1/4)*2∫1/[(x/2+1/2)^2+1]d(x/2+1/2)

=1/2∫1/[(x/2+1/2)^2+1]d(x/2+1/2)=1/2arctan[(x+1)/2]+c明白?可繼續問.

附:arctanx'=1/(1+x^2)

12樓:笑年

=∫1/[(x+1)^2+2^2]d(x+1)=∫1/2^2d(x+1) 在分母把2^2提出來=1/4∫1/d(x+1)

=1/2∫1/d(x+1)/2

=(1/2)arctan[(x+1)/2]+c ( 有公式 (arctanx)'=1/(x^2+1) )

13樓:帥哥靚姐

∫1/(x²+2x+5)dx

=∫1/[(x+1)²+4]dx

=∫1/[(x+1)²+2²]d(x+1)=∫(1/4)/([(x+1)/2]²+1)=(1/2)∫d[(x+1)/2]/([(x+1)/2]²+1)=(1/2)arctan[(x+1)/2]+c

14樓:匿名使用者

第二步就配平方,第三步換元,

∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + c

15樓:匿名使用者

微分裡面需要湊成d(x+1)/2

求不定積分 x/(x^4+2x^2+5) 有過程謝謝

16樓:亂答一氣

∫ x/(x^4+2x^2+5)dx

=1/2∫ 1/(x^4+2x^2+5)dx^2=1/2∫ 1/[(x^2+1)^2+4)dx^2=1/4arctan[(x^2+1)/2]+c

17樓:我不是他舅

原式=∫xdx/[(x²+1)²+4]

=1/2∫dx²/4[(x²/2+1/2)²+1]=1/16∫d(x²/2+1/2)/[(x²+1)²+1]=1/16*arctan(x²/2+1/2)+c

18樓:匿名使用者

令u = x²+1, du = 2xdx

原式 = (1/2) ∫ du / (u² + 4) = (1/4) arctanu + c

= (1/4) arctan(x²+1) + c

19樓:匿名使用者

^^^先把分母配方得(x^2+1)^2+4。

原式變為∫ x/((x^2+1)^2+4) dx。

利用第一類換元法得1/2∫ 1/((x^2+1)^2+2^2) d(x^2+1)。

然後再用公式∫ 1/(a^2+x^2)dx=1/a arctan(x/a) +c

1/2∫ 1/((x^2+1)^2+2^2) d(x^2+1)=1/4 arctan((x^2+1)/2) +c。

希望對你有用。

求不定積分2x2x22x5dx

2x 2 dx x 版2 2x 5 權 2x 2 dx x 2 2x 5 4 d x 1 x 1 2 2 d x 2 2x 5 x 2 2x 5 2 2 d x 1 2 x 1 2 2 1 ln x 2 2x 5 2 2arctan x 1 2 c 2x 2 x 專2 2x 5 dx 屬 2x 2 ...

不定積分5x3x22x5dx

設 2x 3x 3 x 1 x 2x 5 a x 1 bx c x 2x 5 則2x 3x 3 a x 2x 5 bx c x 1 整理得2x 3x 3 a b x 2a b c x 5a c a b 2 2a b c 3 5a c 3 解得 a 1 b 3c 2 2x 3x 3 x 1 x 2x ...

求不定積分x25x2dx,求不定積分x1xx2dx

x 2 5x dx 1 2 1 2 5x d x 1 10 1 2 5x d 2 5x 1 10 2 2 5x c 1 5 2 5x c 求不定積分 x 1 x x 2 dx x 2 x 1 x 1 2 2 3 4 letx 1 2 3 2 tanu dx 3 2 secu 2 du x 1 x x...