1樓:和塵同光
^^|∫ dx/√
源(a^bai2+x^du2)
letx = atany
dx= a(secy)^2 dy
∫zhi dx/√(a^2+x^2)
=∫ secy dy
=ln|daosecy+tany| + c=ln| (√(a^2+x^2)+x ) /a | + c
求不定積分∫1/(a^2+x^2)dx 解答越詳細越好。。。
2樓:demon陌
令x=atanz
dx=asec2z dz
原式=∫asecz*asec2z dz
=∫secz dtanz,a2先省略
=secztanz - ∫tanz dsecz
=secztanz - ∫tanz(secztanz) dz
=secztanz - ∫sec3z dz + ∫secz dz
∵2∫sec3z dz = secztanz + ln|secz + tanz|
∴∫sec3z dz = (1/2)secztanz + (1/2)ln|secz + tanz| + c
原式=(1/2)a2secztanz + (1/2)a2ln|secz + tanz| + c1
=(1/2)x√(a2+x2) + (1/2)a2ln|x + √(a2+x2)| + c2
3樓:匿名使用者
∫ dx/(a2 + x2)
= ∫ dx/[a2(1 + x2/a2)]= (1/a2)∫ dx/(1 + x2/a2)= (1/a2)∫ d(x/a · a)/(1 + x2/a2)= (1/a2)(a)∫ d(x/a)/(1 + x2/a2)= (1/a)∫ d(x/a)/[1 + (x/a)2]= (1/a)arctan(x/a) + c <==公式∫ dx/(1 + x2) = arctan(x) + c
不明白你的過程,沒有1/2的,那是1/a
求不定積分x25x2dx,求不定積分x1xx2dx
x 2 5x dx 1 2 1 2 5x d x 1 10 1 2 5x d 2 5x 1 10 2 2 5x c 1 5 2 5x c 求不定積分 x 1 x x 2 dx x 2 x 1 x 1 2 2 3 4 letx 1 2 3 2 tanu dx 3 2 secu 2 du x 1 x x...
求不定積分2x2x22x5dx
2x 2 dx x 版2 2x 5 權 2x 2 dx x 2 2x 5 4 d x 1 x 1 2 2 d x 2 2x 5 x 2 2x 5 2 2 d x 1 2 x 1 2 2 1 ln x 2 2x 5 2 2arctan x 1 2 c 2x 2 x 專2 2x 5 dx 屬 2x 2 ...
x1x22x3dx的不定積分怎麼求
x 1 x2 2x 3 dx 1 2 2x 2 x2 2x 3 dx 1 2 2x 2 4 x2 2x 3 dx 1 2 2x 2 x2 2x 3 dx 1 2 4 x2 2x 3 dx 1 2 2x 2 x2 2x 3 dx 2 1 x2 2x 3 dx 1 2 d x2 2x 3 x2 2x 3...