1樓:匿名使用者
(1/2)arctan(x-1)+(1/2)x(x-1)/(x^2-2x+2)+c
解題過程如下:
i = ∫xdx/(x^2-2x+2)^2 = ∫xdx/[(x-1)^2+1]^2,
令 x-1= tant, 則 x=1+tant, dx=(sect)^2dt,
i = ∫xdx/[(x-1)^2+1]^2 = ∫(1+tant)dt/(sect)^2
= ∫[(cost)^2+sintcost]dt
= ∫[1/2+(1/2)cos2t+sintcost]dt
= t/2+(1/4)sin2t+(1/2)(sint)^2+c
= (1/2)arctan(x-1)+(1/2)x(x-1)/(x^2-2x+2)+c
記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
2樓:匿名使用者
i = ∫xdx/(x^2-2x+2)^2 = ∫xdx/[(x-1)^2+1]^2,
令 x-1= tant, 則 x=1+tant, dx=(sect)^2dt,
i = ∫xdx/[(x-1)^2+1]^2 = ∫(1+tant)dt/(sect)^2
= ∫[(cost)^2+sintcost]dt
= ∫[1/2+(1/2)cos2t+sintcost]dt
= t/2+(1/4)sin2t+(1/2)(sint)^2+c
= (1/2)arctan(x-1)+(1/2)x(x-1)/(x^2-2x+2)+c
求不定積分∫x/(x²+2x+2)dx
3樓:匿名使用者
∫x/(
x²+2x+2)dx=1/2*∫(2x+2-2)/(x²+2x+2)dx
=1/2*∫(2x+2)/(x²+2x+2)dx-∫1/(x²+2x+1+1)dx
=1/2ln(x²+2x+2)+arctan(x+1)+c
求不定積分∫x/(x^2+2x+2)dx
4樓:匿名使用者
解∫x/(x²+2x+2)dx
=1/2∫(2x+2-2)/(x²+2x+2)dx=1/2∫(2x+2)/(x²+2x+2)dx-∫1/(x²+2x+2)dx
=1/2∫1/(x²+2x+2)d(x²+2x+2)-∫1/[(x+1)²+1]dx
=1/2∫1/udu-∫1/[(x+1)²+1]d(x+1)=1/2ln|u|-∫1/(u²+1)du=1/2ln(x²+2x+2)-acrtanu+c=1/2ln(x²+2x+2)-arctan(x+1)+c
5樓:匿名使用者
答:∫[x/(x^2+2x+2)]dx
=∫ dx
=∫d(x+1) - ∫ d(x+1)
=(1/2)∫ d[(x+1)²+1] - ∫ d(x+1)=(1/2) ln [(x+1)²+1] -arctan(x+1)+c
= ln√(x²+2x+2) -arctan(x+1)+c
求不定積分x2a2x2dx
令x asint,則dx acost dt x a x dx a sin t acost acostdt a sin t dt a 1 cos2t 2 dt a 1 2dt a cos2tdt a t 2 1 2 a sin2t c 1 2 a arcsin x a x a x c 求不定積分 x ...
求不定積分2x2x22x5dx
2x 2 dx x 版2 2x 5 權 2x 2 dx x 2 2x 5 4 d x 1 x 1 2 2 d x 2 2x 5 x 2 2x 5 2 2 d x 1 2 x 1 2 2 1 ln x 2 2x 5 2 2arctan x 1 2 c 2x 2 x 專2 2x 5 dx 屬 2x 2 ...
求不定積分x25x2dx,求不定積分x1xx2dx
x 2 5x dx 1 2 1 2 5x d x 1 10 1 2 5x d 2 5x 1 10 2 2 5x c 1 5 2 5x c 求不定積分 x 1 x x 2 dx x 2 x 1 x 1 2 2 3 4 letx 1 2 3 2 tanu dx 3 2 secu 2 du x 1 x x...