1樓:匿名使用者
令x=asint,則dx=acost dt ∫x²/√(a²-x²) dx=∫a²sin²t/(acost)·acostdt=a²∫sin²t dt=a²∫(1-cos2t)/2 dt=a²∫1/2dt-a²∫cos2tdt=a²t/2-1/2·a²sin2t+c=1/2·a²arcsin(x/a)-x·√(a²-x²)+c
求不定積分 x^2/√(a^2-x^2) dx 求過程 謝謝
2樓:漢恭司秋
^r=原式=∫[(x²-a²+a²)/√(a^2-x^2)]dx
=-∫√(a^2-x^2)dx+a²∫[1/√(a^2-x^2)]dx=p+q
前一項積分p可以利用分步積分法:
p=[-x√(a^2-x^2)]+∫xd[√(a^2-x^2)]=[-x√(a^2-x^2)]-∫[x²/√(a^2-x^2)]dx=[-x√(a^2-x^2)]-r
後一項積分q使用第一類換元積分法可以求得:
q=a²arcsin(x/a)+c0.......................................(c0為常數)
綜上有:r=p+q=[-x√(a^2-x^2)]-r+a²arcsin(x/a)+c0
解得:原式=r=(1/2)+c...........................(c=0.5c0)
根號下a^2+x^2的不定積分怎麼求
3樓:匿名使用者
^^解:∫√(a^2-x^2)dx
設x=asint
則dx=dasint=acostdt
a^2-x^2
=a^2-a^2sint^2
=a^2cost^2
∫√(a^2-x^2)dx
=∫acost*acostdt
=a^2∫cost^2dt
=a^2∫(cos2t+1)/2dt
=a^2/4∫(cos2t+1)d2t
=a^2/4*(sin2t+2t)
將x=asint代回
∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+c
擴充套件資料:積分公式
注:以下的c都是指任意積分常數。
全體原函式之間只差任意常數c
4樓:牽奕聲梅妍
^^^∫x^2/√(a^2+x^2)dx
=∫(x^2+a^2-a^2)/√(a^2+x^2)dx=∫√(x^2+a^2)dx-a^2∫dx/√(a^2+x^2)=x√(x^2+a^2)-
∫x√d(x^2+a^2)dx-a^2arsh(x/a)=x√(x^2+a^2)-
∫x^2dx/√(x^2+a^2)-a^2(ln(x/a+√(1+(x/a)^2)),
2∫x^2dx/√(x^2+a^2)=
x√(x^2+a^2)-a^2,
∴∫x^2dx/√(a^2+x^2)=
x√(a^2+x^2)/2-a^2ln[x+√(a^2+x^2)]/2+c
這裡用到分部積分和反雙曲正弦函式arshx。
5樓:享受孤獨
有分部積分做的確比較簡單
6樓:來安大記得q我
用分部積分法,
i=∫√x^2+a^2dx=x√x^2+a^2-∫x·x/√x^2+a^2dx
7樓:匿名使用者
答案錯了吧 ln前應該是a^2/2吧?
求不定積分:∫根號(a^2-x^2)dx。為什麼要今x=asint,怎麼來的
8樓:系傅香拱賦
樓上說的對,根據sin
cos的公式原理,這種屬於第二類換元積分,為的就是去掉根號接著往下做是dx=acostdt
∫acost*acostdt
=a²∫cos²tdt=(a²/2)t+a²/2xsintcost+c
因為x=asint所以
t=arcsin(x/a)
求不定積分2x2x22x5dx
2x 2 dx x 版2 2x 5 權 2x 2 dx x 2 2x 5 4 d x 1 x 1 2 2 d x 2 2x 5 x 2 2x 5 2 2 d x 1 2 x 1 2 2 1 ln x 2 2x 5 2 2arctan x 1 2 c 2x 2 x 專2 2x 5 dx 屬 2x 2 ...
求不定積分x25x2dx,求不定積分x1xx2dx
x 2 5x dx 1 2 1 2 5x d x 1 10 1 2 5x d 2 5x 1 10 2 2 5x c 1 5 2 5x c 求不定積分 x 1 x x 2 dx x 2 x 1 x 1 2 2 3 4 letx 1 2 3 2 tanu dx 3 2 secu 2 du x 1 x x...
(x 2x 2)不定積分,求x (x 2x 2) 不定積分
1 2 arctan x 1 1 2 x x 1 x 2 2x 2 c 解題過程如下 i xdx x 2 2x 2 2 xdx x 1 2 1 2,令 x 1 tant,則 x 1 tant,dx sect 2dt,i xdx x 1 2 1 2 1 tant dt sect 2 cost 2 si...