1樓:匿名使用者
設 為實數列,a 為定數.若對任給的正數 ε,總存在正整數n,使得當 n>n 時有∣xn-a∣<ε 則稱數列 收斂於a,定數 a 稱為數列 的極限,若數列 沒有極限,則稱 不收斂,或稱 為發散數列.該定義常稱為數列極限的 ε—n定義.
高等數學,數列的極限,數列極限的定義中的n為什麼與給定的正數ε有關?
2樓:風葟成韻
我學高數老師幫助我們理解的方法是這樣。
n和ε的關係是,假如你說這個極限xn趨近於5,怎麼證明呢?你說當我n超大的時候,大於你給出任何乙個正數n的時候,你再隨便給我乙個最小最小的數,我用xn-5得到的值比這個最小最小的數都小,那麼在數學上這好像就是趨近於0了,就說明xn的極限就是5了。
好理解了點嗎?
3樓:為了生活奔波
樓上的人亂講,這個數是乙個精度,表示足夠小的數,例如1,100,1000明顯是很大的數,不可以取!ε是乙個足夠小的數,小極了!你要問我小到什麼程度?
太小了,我說不出來有多小。這樣解釋能理解的吧??
4樓:盛曼華鬱嫻
無窮小與有界函式的極限存在,但是極限為1的數列與極限為無窮的數列乘積不一定存在。
舉個反例an=1+1/n
當n趨於無窮時數列an的極限為1
bn=n
bn的極限為無窮
乘積anbn=n+1,極限不存在
在高等數學數列極限定義中,ε 為什麼不要直接等於零
5樓:匿名使用者
在數列極限的魏爾斯特拉斯定義(即ε-n定義)裡面,ε具有兩重性:即任意性和給定性。任意性是指ε可以是任意小的正數,ε越**明數列的一般項越接近於極限值;給定性是指只要給定ε的乙個值,在數列中就可以找到一項n,使數列第n項後面的所有項與極限值距離都嚴格小於這個給定的ε,n的值與ε的取值有關,但n不是ε的函式。
ε-n定義體現了通過有限認識無限的科學思維方法。
6樓:匿名使用者
極限的幾何概念是無限趨近,n趨向∞,極限值可以無限趨近於a但是可以永遠不等於a,這種情況下ε就不能簡單要求他等於0,而必須要求他可以無限小。
7樓:夔斐蕢憶靈
不能省略
舉個反例就是
不妨令0|q|
===>ε>q^1
又因為0那麼要可以取ε=q^(-7)
那麼後面的q^n<ε=q^(-7)
那麼解得是n>-7
則存在n為負數滿足|q^n|<ε
顯然n不能取負數
所以必須讓0<ε<|q|
高等數學的極限定義是什麼意思?
8樓:drar_迪麗熱巴
定義:設為一無窮數列,如果存在常數a對於任意給定的正數ε(不論它多麼小),總存在正整數n,使得當n>n時的一切xn,均有不等式|xn - a|<ε成立,那麼就稱常數a是數列的極限,或稱數列收斂於a。記為lim xn = a 或xn→a(n→∞)。
』極限思想』方法,是數學分析乃至全部高等數學必不可少的一種重要方法,也是『數學分析』與在『初等數學』的基礎上有承前啟後連貫性的、進一步的思維的發展。
數學分析之所以能解決許多初等數學無法解決的問題(例如求瞬時速度、曲線弧長、曲邊形面積、曲面體的體積等問題),正是由於其採用了『極限』的『無限逼近』的思想方法,才能夠得到無比精確的計算答案。
人們通過考察某些函式的一連串數不清的越來越精密的近似值的趨向,趨勢,可以科學地把那個量的極準確值確定下來,這需要運用極限的概念和以上的極限思想方法。
9樓:匿名使用者
我想知道為什麼不能n 高等數學極限定義 10樓:路人化的 就是說函式在這一點上沒有定義。。。或者說定義域不包含這一點舉乙個例子好了: f(x)=x+1, 定義域為 x不等於1 顯然函式在 x=1 時是沒有定義的,但是在 x=1 處的極限存在 11樓:猶金生邱鳥 數列極限的定義:設為乙個數列,a為乙個給定實數。如果對於任意給定的正數e,都存在正整數n,使得當n>n時,就有|xn-a|正無窮。 證明:對任意給定的正數e,都有|xn-c|=0=1.由極限定義,limxn=c,n->正無窮。 12樓:濱崎步最愛 與x處是否有定義沒有關係。 13樓:黑洞深邃 函式求極限的研究過程只是x的變化過程,與x具體等於某個x0無關,也就是說,極限研究的是動態過程中遵循的某種規律,而不是純粹的靜態問題。 14樓:磨墨舞文 可以這麼說,有定義只是連續的要求,有極限要求是從x0的左右鄰域趨近極限相等 用極限定義證明時就是 假設給定e 然後用不等式去找n的值 n與e有關 最後把邏輯過程你過來就是證明即先假設極限成立求n,若求的了n,然後反過來說以證明極限成立求不到n則極限不成立 為什麼要發一下才能看到問題!此題用的是n 定義證明,種證明思想是大學中最常用的,其中只要存在乙個n即可由定義而得證。高數... 普通的 語言就是 對於任意的 總是存在 當 x x0 時,有 f x f x0 成立。同樣地,這種情況下就是 0,就是可以任意取它都可以得到 f x f x0 0 成立。指乙個鄰域 當然不可能為空或一點 x x0的所有值都是該鄰域的子集可追問 這個東西需要細心分析和多見識一些這種型別的題目,此外還需... x 0,分母為1,極限 xsin 1 x 0 sin 1 x 0 得出極限為0 高等數學函式極限 50 f x 1 e x x 1 1 lim x 1 1 e x x 1 1 0x 1,第1類間斷點 lim x 0 1 e x x 1 1 1 0 1 1lim x 0 1 e x x 1 1 0x ...高等數學數列極限的定義論證法問題
高等數學中函式的極限定義正面的疑惑
高等數學的函式極限問題,高等數學函式極限