1樓:匿名使用者
x1,x2是方程x方+3x+1=0的兩實數根,即x1^2+3x1+1=0
x1^2+3x1=-1
x1^2=-3x1-1
根據韋達定理得x1+x2=-3
x1^3+8x2+20
=x1*x1^2+8x2+20
=x1*(-3x1-1)+8x2+20
=-3x1^2-x1+8x2+20
=-3x1^2-9x1+8x1+8x2+20=-3(x1^2+3x1)+8(x1+x2)+20=-3*(-1)+8*(-3)+20
=3-24+20=-1
2樓:匿名使用者
解:因為 x1^2+3x1=-1 ,又由韋達定理有:x1+x2=-3x1^3+8x2+20 = x1^3+3x1^2-3x1^2+8x2+20 = x1(x1^2+3x1)-3x1^2+8x2+20
= -x1-3x1^2+8x2+20 =-3x1^2-x1-8x1+8x1+8x2+20
=-3(x1^2+3x1)+8x1+8x2+20 =3+8(x1+x2)+20 = 3+8×(-3)+20=-1
3樓:匿名使用者
用求根公式解出x1,x2 再代入 有兩個結果
已知X1X2為方程X 3X 1 0的兩實根,則X1 3X
x1 3x1 1 0,x1 1 3x1x1 3x2 20 1 3x1 3x2 20 19 3 x1 x2 19 3 3 28 x1 3x2 20 1 3x1 3x2 20 19 3 x2 x1 x2 x1 2 x1 x2 2 4x1x2 9 4 5x2 x1 5 x1 3x2 20 19 3 5 x...
設x1,x2是方程3x 2x 4 0的兩根,不解方程,求下列各式的值
解 因為 x1,x2是方程 3x 2 2x 4 0的兩根,所以 x1 x2 2 3,x1 x2 4 3,所以 1 1 x1 1 x2 x1 x2 x1 x2 2 3 4 3 1 2.2 x2 x1 x1 x2 x2 2 x1 2 x1 x2 x1 x2 2 2x1 x2 x1 x2 2 3 2 2 ...
若x1,x2是關於x的方程x 2 2k 1 x k 2 1 0的兩實根,且x1,x2都大於1 求 1 k的取值範圍 2 若x
1 判別式 4k 3 0 k 3 4韋達定理x1 x2 2k 1 2 k 0.5x1x1 k 2 1 1 k不等於0 因為a 0,當x 1時,y 0 k不等於1綜上,k 3 4且k不等於1 2 令x1 a,則x2 2a 原方程 x a x 2a 0 x 2 3ax 2a 2 0 3a 2k 1 且2...