數列求和1 ,數列求和 1 1 2 1 3 1 4 1 5 1 n 急

2021-04-02 18:29:34 字數 4501 閱讀 5153

1樓:你愛我媽呀

利用「尤拉公式:1+1/2+1/3+……+1/n=ln(n)+c,c為尤拉常數數值是0.5772……

則1+1/2+1/3+1/4+...+1/2007+1/2008=ln(2008)+c=8.1821(約)

就不出具體數字的,如果n=100 那還可以求的 。然而這個n趨近於無窮 ,所以算不出的。

它是實數,所以它不是有理數就是無理數,而上兩層的人說「談不上到底是無理數還是有理數」的說法顯然是錯誤的。而根據種種依據可判斷它是無理數。

具體證明過程如下:

首先我們可以知道實數包括有理數和無理數,而有理數又包括有限小數和無限迴圈小數,有理數都可以劃成兩個有限互質整數相除的形式(整數除外)。而1+1/2+1/3+1/4+1/5+...+1/n (n為無限大)通分以後的分子和分母都是無窮大,不是有限整數,且不能約分,所以它不屬於有理數,因此它是無理數。

而1+1/2+1/3+1/4+1/5+...+1/n (n為無限大)不存在迴圈節,不可能根據等比數列知識劃成兩個互質整數相除的形式。所以它終究是無理數。

這是有名的調和級數,是高數中的東西。這題目用n!

當n->∞,1+1/2+1/3+1/4+1/5+...+1/n->∞,是個發散級數

當n很大時,有個近似公式:1+1/2+1/3+1/4+1/5+...+1/n=γ+ln(n)

γ是尤拉常數,γ=0.57721566490153286060651209...

ln(n)是n的自然對數(即以e為底的對數,e=2.71828...)

由於ln(1+1/n)ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)

=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]

=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)

由於lim sn(n→∞)≥lim ln(n+1)(n→∞)=+∞

所以sn的極限不存在,調和級數發散。

但極限s=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)卻存在,因為

sn=1+1/2+1/3+…+1/n-ln(n)>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)-ln(n)

=ln(n+1)-ln(n)=ln(1+1/n)

由於lim sn(n→∞)≥lim ln(1+1/n)(n→∞)=0

因此sn有下界

而sn-s(n+1)=1+1/2+1/3+…+1/n-ln(n)-[1+1/2+1/3+…+1/(n+1)-ln(n+1)]

=ln(n+1)-ln(n)-1/(n+1)=ln(1+1/n)-1/(n+1)>ln(1+1/n)-1/n>0

所以sn單調遞減。由單調有界數列極限定理,可知sn必有極限,因此

s=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)存在。

2樓:凌吟佳

當n很大時,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//c++裡面

用log(n),pascal裡面用ln(n)

0.57721566490153286060651209叫做尤拉常數

to gxq:

假設;s(n)=1+1/2+1/3+1/4+..1/n

當 n很大時 sqrt(n+1)

= sqrt(n*(1+1/n))

= sqrt(n)*sqrt(1+1/2n)

≈ sqrt(n)*(1+ 1/(2n))

= sqrt(n)+ 1/(2*sqrt(n))

設 s(n)=sqrt(n),

因為:1/(n+1)<1/(2*sqrt(n))

所以:s(n+1)=s(n)+1/(n+1)< s(n)+1/(2*sqrt(n))

即求得s(n)的上限

1+1/2+1/3+…+1/n是沒有好的計算公式的,所有計算公式都是計算近似值的,且精確度不高。

自然數的倒數組成的數列,稱為調和數列.人們已經研究它幾百年了.但是迄今為止沒有能得到它的求和公式只是得到它的近似公式(當n很大時):

1+1/2+1/3+......+1/n≈lnn+c(c=0.57722......乙個無理數,稱作尤拉初始,專為調和級數所用)

人們傾向於認為它沒有乙個簡潔的求和公式.

但是,不是因為它是發散的,才沒有求和公式.相反的,例如等差數列是發散的,公比的絕對值大於1的等比數列也是發散的,它們都有求和公式.

3樓:匿名使用者

令 s(n) = 1+1/2+1/3+1/4+1/5+1/6+...1/n,

則 s(∞) = 1 + (1/2+1/3) + (1/4+1/5+1/6+1/7) + ...

< 1 + (1/2+1/2) + (1/4+1/4+1/4+1/4) + ...

且 s(∞) = 1 + 1/2 +(1/3+1/4) + (1/5+1/6+1/7+1/8) + ...

> 1 + 1/2 +(1/4+1/4) + (1/8+1/8+1/8+1/8) + ...

可推證:1 + k/2 < s(n) < 1 + k,其中 k = log(ln)/log(2),n>2

從上式,可看出s(n)不收斂。

我不知道樓主是如何得到 sqrt(n) 上限的,

但可以肯定上式在更接近s(n)上限(當n>40時)。

看到這個問題,首先想到是叫「尤拉常數」的東西,但在網上遍尋不到,

而後決定用不等式,但如果對整體處理,誤差非常大,

所以,我決定分段處理,不想居然成功了!

4樓:匿名使用者

簡單,就是尤拉常數0.57721566490153286060651209+log(n)

數列求和:sn=1/2^2-1+1/3^2-1+1/4^2-1+.....+1/n^2-1 麻煩各位幫忙解一下...急用

5樓:匿名使用者

sn=1/2^2 - 1 + 1/3^2 - 1 + 1/4^2 - 1 +..... + 1/n^2 - 1

=1/(2 - 1)(2 + 1) + 1/(3 - 1)(3 + 1) + ...... + 1/(n - 1)(n + 1)

=1/(1 * 3) + 1/(2 * 4) + ...... + 1/(n - 1)(n + 1)

=1/2[1/1 - 1/3 + 1/2 - 1/4 + ...... + 1/(n - 1)(n + 1)]

=1/2[1 + 1/2 - 1/n - 1/(n + 1)]

=3/4 - 1/(2n) - 1/(2n + 2)

6樓:洪葉

因為an=1/2(1/(n-1)-1/(n+1))所以sn=a1+a2+.....+an

=1/2(1-1/3+1/2-1/4+1/3-1/5+.....+1/(n-1)-1/(n+1))

=1/2(1+1/2-1/n-1/(n+1))=1/2(3/2-1/n-1/(n+1))=(3*n*n-n-2)/(4n(n+1))

用c語言程式設計s=1+1/2!+1/3!+1/4!+……+1/n!其中n的值由鍵盤輸入(急呀)

7樓:匿名使用者

#include

double a(int num)

void main()

急求:1+1/4+1/9+1/16+…1/n^2=?(求和這樣的數列求和有公式嗎) 10

8樓:

f=0for i=1 to n

f=f+1/(i^2)

next i

9樓:匿名使用者

vb:dim i%,n%,f as doublen=val(inputbox("輸入n"))f=0

for i=1 to n

f=f+1/(i^2)

next i

msgbox(f)

vc:#include

main()

printf("%f",c);

scanf("%f,c);//檢視結果

}如果你看不懂……sorry,我無能為力

用c語言求s=1-1/2!+1/3!-1/4!+……+1/n!其中n的值由鍵盤輸入(急!!)

10樓:墨汁諾

#include

double factorial(int n)return f;

}void main()

printf("s=%f\n", s) ;}

11樓:匿名使用者

讓水更清,讓天更藍,讓花更豔,讓我們的地球更美麗,破壞環境的人應感到羞恥,加入美洲獅行列,愛護我們生存的地球

數列求和1 2 3,2 3 4,

因為1 2 3 1 4 4 3 2 1 3 2 1 0 1 2 3 4 1 4 5 4 3 2 4 3 2 1 2 3 4 5 1 4 6 5 4 3 5 4 3 2 3 n 3 n 2 n 1 1 4 n n 1 n 2 n 1 n 2 n 3 n 2 n 1 n 1 4 n 1 n n 1 n ...

求解幾條數列求和

調和級數s 1 1 2 1 3 是發散的,證明如下 由於ln 1 1 n 1 n n 1,2,3,於是調和級數的前n項部分和滿足。sn 1 1 2 1 3 1 n ln 1 1 ln 1 1 2 ln 1 1 3 ln 1 1 n ln2 ln 3 2 ln 4 3 ln n 1 n ln 2 3 ...

等比數列求和通項公式,等比數列求和公式是什麼?

樓上的說的對,不過有時看不懂,我在這補充下 a1是數列的第一個數,q是等比數列的比,n是指共有幾數,q n是說比的n次方 滿意答案的求和公式錯了。應該是sn a1 1 q n 1 q 等比數列 1 等比數列 an 1 an q,n為自然數。2 通項公式 an a1 q n 1 推廣式 an am q...