如果fx為偶函式,且存在,用導數定義證明f00的

2021-03-04 06:34:47 字數 490 閱讀 2599

1樓:伊伊寶寶寶貝

f(x)為偶函式,則y=f(x)=f(-x)y'=f(x)'=f(-x)'×(-x)'=-f(-x)'

f(x)'=-f(-x)' ,即偶函式的導數是奇函式所以f(x)'+f(-x)' =0

f'(0)存在,令x=0

f(0)'+f(-0)'=0

2f(0)'=0

所以f'(0)=0.

偶函式的導函式是奇函式,在0點有定義,則f『(0)=0;

證明:因為是偶函式,所以f(x)=f(-x),對該式子兩邊求導得f'(x)=-f'(-x),可見f'(x)是奇函式,又因為0點有意義,f』(0)=0

2樓:

直觀理解:

偶函式的導函式是奇函式,在0點有定義,則f『(0)=0;

證明:因為是偶函式,所以f(x)=f(-x),對該式子兩邊求導得f'(x)=-f'(-x),可見f'(x)是奇函式,又因為0點有意義,f』(0)=0

如果fx為偶函式,且fx存在。證明fx

題目有誤,應該是證明f 0 0 證明 因為f x 是偶函式,所以一定滿足關係f x f x 若f x 存在,對上面的等式兩邊求導得 f x f x f x f x 令x 0時,f 0 f 0 所以f 0 0 很明顯題目有誤,舉個最簡單的例子,f x x 就是典型的偶函式,且f x 處處可導,但f x...

設函式fx在xx0處二階導數存在,且fx

錯因 不知道二階導數在附近是否滿足條件 手動滑稽 如果是某區間可判,但一點不行。應該是 使得曲線y f x 在區間 x0 a,x0 是單調遞增,在區間 x0,x0 a 是單調遞減。設函式f x 在x x0處二階導數存在,且f x0 0,f x0 0,則必存在 0 注意 中國大陸數學界某些機構關於函式...

設函式fx在xx0處二階導數存在,且fx

錯因 不知道二階導數在附近是否滿足條件 手動滑稽 如果是某區間可判,但一點不行。應該是 使得曲線y f x 在區間 x0 a,x0 是單調遞增,在區間 x0,x0 a 是單調遞減。設函式f x 在x x0處二階導數存在,且f x0 0,f x0 0,則必存在 0 注意 中國大陸數學界某些機構關於函式...