線性代數通解怎麼求的,線性代數。,這裡的通解是怎麼計算出來的??求解釋??

2021-03-04 05:46:19 字數 1876 閱讀 2315

1樓:匿名使用者

最後乙個矩陣等價於方程組

x1+x2-x3+x4=0

x2=0

3x3+x4=0

x1=4k,

x2=0

x3=k

x4=-3k

(x1,x2,x3,x4)^t=k(4,0,1,-3)^t

2樓:時空聖使

a^t*b=

-1 2

-1 3

|a^t*b|=-1

a*=3 -2

1 -1

(a^t*b)^(-1)=

-3 2

-1 1

線性代數包

括行列式、矩陣、線性方程組、向量空間與線性變換、特徵值和特徵向量、矩陣的對角化,二次型及應用問題等內容。

線性代數。,這裡的通解是怎麼計算出來的??求解釋??

3樓:匿名使用者

係數矩陣 a=

[1 0 1 -1 -3]

[1 2 -1 0 -1]

[4 6 -2 -4 3]

[2 -2 4 -7 4]

行初等變換為

[1 0 1 -1 -3]

[0 2 -2 1 2]

[0 6 -6 0 15]

[0 -2 2 -5 10]

行初等變換為

[1 0 1 -1 -3]

[0 2 -2 1 2]

[0 0 0 -3 9]

[0 0 0 -4 12]

行初等變換為

[1 0 1 -1 -3]

[0 2 -2 1 2]

[0 0 0 1 -3]

[0 0 0 0 0]

行初等變換為

[1 0 1 0 -6]

[0 2 -2 0 5]

[0 0 0 1 -3]

[0 0 0 0 0]

行初等變換為

[1 0 1 0 -6]

[0 1 -1 0 5/2]

[0 0 0 1 -3]

[0 0 0 0 0]

方程組同解變形為

x1 = -x3+6x5

x2 = x3-(5/2)x5

x4 = 3x5

取 x3=1, x5=0, 得基礎解系 (-1 1 1 0 0)^t;

取 x3=0, x5=2, 得基礎解系 (12 -5 0 6 2)^t;

方程組通解是

x = k (-1 1 1 0 0)^t+c (12 -5 0 6 2)^t

其中 k, c 為任意常數。

線性代數一題,求方程組通解,線性代數題,求方程組通解

顯然矩陣的秩為3,對應齊次方程組基礎解系是1維的,也就是找到乙個通解即可 ax 0,即 a1x1 a2x2 a3x3 a4x4 0顯然 1,2,1,0 t就是 然後再找乙個ax b的特解 a1x1 a2x2 a3x3 a4x4 a1 a2 a3 a4顯然 1,1,1,1 t就是。線性代數題,求方程組...

線性代數題,線性代數題

把他變成行最簡,然後整理得到的新列向量組關係和原列向量組關係一樣 r 3情況,直接求行列式,並且令它不等於零,這個求出的k應該是幾個集合的並。r 1或2的情況,第一行加到第二行消去第二行的 1,然後第一行乘 k 加到第三行消去第三行的k,發現都是 2k 2 然後第然行再消去第三行,得到的結果是乙個上...

線性代數的證明!線性代數線性證明

特例的意思就是,乙個列向量也是乙個矩陣,所以結論也滿足。分析 逆矩陣定義 若n階矩陣a,b滿足ab ba e,則稱a可逆,a的逆矩陣為b。解答 a a 3a 0,a e a 3 e a 3e,a 3 e a 3e e a滿足可逆定義,它的逆矩陣為 a 3 3 評注 定理 若a為n階矩陣,有a 分析 ...