線性代數一題,求方程組通解,線性代數題,求方程組通解

2021-03-04 05:46:19 字數 790 閱讀 4176

1樓:匿名使用者

顯然矩陣的秩為3,對應齊次方程組基礎解系是1維的,也就是找到乙個通解即可

ax=0,即 a1x1+a2x2+a3x3+a4x4=0顯然(1,-2,-1,0)t就是

然後再找乙個ax=b的特解

a1x1+a2x2+a3x3+a4x4=a1+a2+a3-a4顯然(1,1,1,-1)t就是。

線性代數題,求方程組通解

2樓:匿名使用者

1)非齊次方程組ax=b的通解可以表示為:它的乙個特解和齊次方程組ax=0的通解之和。

2)特解可以選為 題目中的 yita_1或者yita_2.

3) 齊次方程組ax=0的通解可以表示為基礎解系解向量的線性組合。由於係數矩陣的秩r=3,未知數個數為n=4,故 基礎解系解向量的數目為n-r=1. 這個基礎解系解向量可以選為任意乙個非零解向量,例如, 題目中的 (yita_1 - yita_2) 就是這樣乙個解向量。

4) 因此,題目所要求的方程組的通解可以表示為 yita_1 + k* (yita_1 - yita_2),其中k為任意常數。

5) 將題目的yita_1和yita_2帶入,便可求的答案。

求該方程組的通解,線性代數。謝謝啦

3樓:匿名使用者

簡單的說一下思路:已知方程的乙個特解,可以代入方程組求解出k的值,然後在利用矩陣的初等變換求解方程組的解,非齊次方程組的通解可以用齊次方程組的通解加上非齊次方程組的乙個特解就可以搞定,剩下的就是計算的問題了。

線性代數,線性方程組問題,線性代數,線性方程組。求通解

一 對增廣矩bai陣作初等變du換,化為階梯型 1 當 2時,zhir a r a,b 2,方dao程組有版無窮多解。2 當 1 2時,r a 1 r a,b 方程組無解。3,當 權2,1 2時,r a r a,b 3,方程組有唯一解。二 對增廣矩陣作初等變換,化為階梯型 1 當 1時,r a r ...

大學線性代數齊次線性方程組基礎解和通解的題目

係數矩陣 a 1 2 1 1 3 6 1 3 5 10 1 5 行初等變 換為 1 2 1 1 0 0 4 0 0 0 4 0 行初等變換為 1 2 0 1 0 0 1 0 0 0 0 0 方程組同解變形為 x1 2x2 x4 0 x3 0 即 x1 2x2 x4 x3 0 取 x2 1,x4 0,...

線性代數通解怎麼求的,線性代數。,這裡的通解是怎麼計算出來的??求解釋??

最後乙個矩陣等價於方程組 x1 x2 x3 x4 0 x2 0 3x3 x4 0 x1 4k,x2 0 x3 k x4 3k x1,x2,x3,x4 t k 4,0,1,3 t a t b 1 2 1 3 a t b 1 a 3 2 1 1 a t b 1 3 2 1 1 線性代數包 括行列式 矩陣...