1樓:麥芽糖
^係數矩陣 a =
[1 2 1 -1]
[3 6 -1 -3]
[5 10 1 -5]
行初等變
換為[1 2 1 -1]
[0 0 -4 0]
[0 0 -4 0]
行初等變換為
[1 2 0 -1]
[0 0 1 0]
[0 0 0 0]
方程組同解變形為
x1+2x2-x4=0
x3=0
即 x1=-2x2+x4
x3=0
取 x2=-1,x4=0,得基礎解專系 (2,-1,0,0)^t;
取 x2=0,x4=1,得基礎解系 (1,0,0,1)^t.
則方程組通屬解為
x=k(2,-1,0,0)^t+c(1,0,0,1)^t,其中 k,c 為任意常數
2樓:時空聖使
【分析】
逆矩陣定義:若n階矩陣a,b滿足ab=ba=e,則稱a可逆,回a的逆矩陣為b。答
【解答】
a³-a²+3a=0,
a²(e-a)+3(e-a)=3e,
(a²+3)(e-a) = 3e
e-a滿足可逆定義,它的逆矩陣為(a²+3)/3【評注】
定理:若a為n階矩陣,有ab=e,那麼一定有ba=e。
所以當我們有ab=e時,就可以直接利用逆矩陣定義。而不需要再判定ba=e。
對於這種抽象型矩陣,可以考慮用定義來求解。
如果是具體型矩陣,就可以用初等變換來求解。
線性代數包括行列式、矩陣、線性方程組、向量空間與線性變換、特徵值和特徵向量、矩陣的對角化,二次型及應用問題等內容。
3樓:匿名使用者
提問不清楚,無法判斷,無法回答問題。
線性代數題,求非齊次線性方程組的通解並用其匯出組的基礎解系表示,要詳細解答過程,最後發**清楚一點
4樓:匿名使用者
增廣矩陣 (a, b) =
[1 2 3 1 -3 5]
[2 1 0 2 -6 1]
[3 4 5 6 -3 12]
[1 1 1 3 1 4]
行初等變換為
[1 2 3 1 -3 5]
[0 -3 -6 0 0 -9]
[0 -2 -4 3 6 -3]
[0 -1 -2 2 4 -1]
行初等變換為
[1 0 -1 1 -3 -1]
[0 1 2 0 0 3]
[0 0 0 3 6 3]
[0 0 0 2 4 2]
行初等變換為
[1 0 -1 0 -5 -2]
[0 1 2 0 0 3]
[0 0 0 1 2 1]
[0 0 0 0 0 0]
r(a,b) = r(a) = 3<5, 方程組
有無窮多解。
方程組同解變形為
x1 = -2+x3+5x5
x2 = 3-2x3
x4 = 1-2x5
取 x3=x5=0, 得特解 (-2 3 0 1 0)^t,
匯出組為
x1 = x3+5x5
x2 = -2x3
x4 = -2x5
取 x3=1,x5=0, 得基礎解系 (1 -2 1 0 0)^t,
取 x3=0,x5=1, 得基礎解系 (5 0 0 -2 1)^t,
則方程組的通解是
x = (-2 3 0 1 0)^t+ k (1 -2 1 0 0)^t
+ c (5 0 0 -2 1)^t,
其中 k, c 為任意常數。
線性代數:非齊次線性方程組與齊次線性方程組的解的關係
5樓:angela韓雪倩
非齊次線性方程組的任意兩個解之差是對應的齊次線性方程組的解。
非齊次線性方程組的解與對應的齊次線性方程組的解之和還是非齊次線性方程組的解。
如果知道非齊次線性方程組的某個解x,那麼它的任意乙個解x與x的差x-x,一定是對應的齊次線性方程組的解,所以非齊次線性方程組的通解x=x+y,y是對應的齊次線性方程組的通解,而y是某個基礎解系的線性組合,y=k1ξ1+k2ξ2+...+krξr。
擴充套件資料:
非齊次線性方程組ax=b的求解步驟:
(1)對增廣矩陣b施行初等行變換化為行階梯形。若r(a)(2)若r(a)=r(b),則進一步將b化為行最簡形。
非齊次線性方程組有唯一解的充要條件是rank(a)=n。
非齊次線性方程組有無窮多解的充要條件是rank(a)齊次線性方程組:常數項全部為零的線性方程組。如果m求解步驟:
1、對係數矩陣a進行初等行變換,將其化為行階梯形矩陣;
2、若r(a)=r=n(未知量的個數),則原方程組僅有零解,即x=0,求解結束;
若r(a)=r3、繼續將係數矩陣a化為行最簡形矩陣,並寫出同解方程組;
4、選取合適的自由未知量,並取相應的基本向量組,代入同解方程組,得到原方程組的基礎解系,進而寫出通解。
線性代數,線性方程組問題,線性代數,線性方程組。求通解
一 對增廣矩bai陣作初等變du換,化為階梯型 1 當 2時,zhir a r a,b 2,方dao程組有版無窮多解。2 當 1 2時,r a 1 r a,b 方程組無解。3,當 權2,1 2時,r a r a,b 3,方程組有唯一解。二 對增廣矩陣作初等變換,化為階梯型 1 當 1時,r a r ...
線性代數問題為什麼齊次線性方程組的基礎解系線性無關
基礎解系是所有解的乙個極大線性無關組,這是定義,定義是不需要證明的。樓上說有理論證明,這其實說的不合理 為什麼齊次線性方程組中線性無關的解都是基礎解系 1,2.k 是基礎解系.所以 1,2.性無關.0,1 0,2 0.k 0 0,1,2.k 所以證明 0,1 0,2 0.k 0 無關也就是證明 0,...
線性代數中非齊次線性方程組的特解指什麼
特解就是找到乙個該方程的乙個解,非齊次的解等於齊次的通解加上特解,這個特解就是我們說的非齊次線性方程組的特解,就是說這個解帶入非齊次方程成立,希望能幫助你 任意乙個非齊次線性方程組的解 關於線性代數非齊次線性方程組的特解問題 圖中求特解,令 x3 x4 1,只是一種 取值 方法,得特解 11,4,1...