1樓:
1.z=a+bi ,z1+z2=(a1+a2)+(b1+b2)i z1*z2按照多項式乘法就行 z1/z2 分母有理化再計算 2.z用模長和角度表示時,z1*z2 模長相乘 角度相加即可
高中數學複數的計算
2樓:三城補橋
1、複數在選修選材2-2中
2、選修2-2的各章內容如下:
第一章 導數及其應用
第二章 推理與證明
第三章 數系的擴充與複數的引入
3、第一章 主要介紹了導數的概念、導數在研究函式中的作用,微積分基本定理等內容
第二章 主要介紹了 合情推理與演繹推理及各種證明方法:如分析法、綜合法、反證法、數學歸納法
第三章 主要介紹了複數的概念與運算
3樓:衡順慈蒼洮
在復平面中建立
復座標系。橫座標是
實數,縱座標是複數。
所以o(0,0)
a(1,2)
b(-2
,6)由
線段oa平行bc
, 又是
等腰梯形,oc=ab
所以可知
c(-5,0)。其中
(-3,4)捨去。
所以c對應的複數是
-5、、、
4樓:況恕折秋
尤拉公式e^ix=cosx+isinx
複數在高中階段
只是個了解
對你解數學題
是沒什麼幫助的
大學後特定條件下
利用複數計算
計算過程會簡便得多
5樓:叢桂花申女
解:設z1=cosa+isina,則z2=-cosa+(2-sina)i.
z1-z2=2cosa+2(sina-1)i丨z1-z2丨=根號下((4cos^2a+4(sina-1)^2)這是三角函式,求出最大值為4.
不懂可以追問
6樓:劇同書喜鸞
複數是為了擴充數系和解類似x^2+1=0這樣的無實數解方程而引入的,引入之後自然要看他有哪些用途,如可簡化問題,圓的方程|z|=r,形式簡單,證明多項式基本定理即證明像一元二次方程有兩個複數解,若是關於x的n次的式子就是n個複數解,引入複數證明了長達幾百年的n次一元方程根的個數問題。現在高中的內容複數實用性不大,主要是估計為了考察知識的全面性才學的,起碼知道有複數這回事,別人說起來能了解一點。由於只要求基本運算,內容不是很多,有聯絡的是方程,曲線軌跡,解析幾何,如果學好的話,用複數法解題和向量法一樣能簡化計算過程
7樓:興義焦亦綠
^由1/(x+yi)=u+vi可知,ux-vy=1,uy+vx=0,解得x=u/(u^2+v^2),y=-v/(u^2+v^2),將這個式子帶入直線方程3x+4y=1可知(3u-4v)/(u^2+v^2)=1,化簡得(u-3/2)^2+(v-2)^2=25/4,是乙個以(3/2,2)為圓心,5/2為半徑的圓的方程。
8樓:李良劇環
你知道嗎?在古代,人們都知道2-1=1,但是他們都不知道1-2=-1.當有一天有人提出這個問題時。
人們都人驚訝,竟然沒有乙個答案,所以負數出現了,現在也是,人們都知道根號100等於10,但是不知道根號負100,因為在我們的認知裡,根號下的負數是錯誤的,但是當這個問題提出來的時候,他就要被解決,那麼,這就是複數的作用。基本等同於負數的作用。
那麼你問的複數可以和高中的什麼只是聯絡在一起,那麼就是根號。
高中數學向量公式
9樓:
設a=(x,y),b=(x',y').
1、向量的加法
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c).
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0
ab-ac=cb.即「共同起點,指向被減」
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數乘向量
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
擴充套件資料:
表達方式
1、代數表示
一般印刷用黑體的小寫英文本母(a、b、c等)來表示,手寫用在a、b、c等字母上加一箭頭(→)表示,如
2、幾何表示
向量可以用有向線段來表示。有向線段的長度表示向量的大小,向量的大小,也就是向量的長度。長度為0的向量叫做零向量,記作長度等於1個單位的向量,叫做單位向量。
10樓:demon陌
設a=(x,y),b=(x',y').
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則.
ab+bc=ac.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c).
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0
ab-ac=cb.即「共同起點,指向被減」
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
3、數乘向量
實數λ和向量a的乘積是乙個向量,記作λa,且∣λa∣=∣λ∣·∣a∣.
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意.
當a=0時,對於任意實數λ,都有λa=0.
注:按定義知,如果λa=0,那麼λ=0或a=0.
實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮.
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍.
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb).
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:
① 如果實數λ≠0且λa=λb,那麼a=b.
② 如果a≠0且λa=μa,那麼λ=μ.
4、向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]
定義:兩個向量的數量積(內積、點積)是乙個數量,記作a·b.若a、b不共線,則a·b=|a|·|b·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣.
向量的數量積的座標表示:a·b=x·x'+y·y'.
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質
a·a=|a|的平方.
a⊥b 〈=〉a·b=0.
|a·b|≤|a|·|b|.
向量的數量積與實數運算的主要不同點
1)向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
2)向量的數量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.
3)|a·b|≠|a|·|b|
4)由 |a|=|b| ,推不出 a=b或a=-b
4、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是乙個向量,記作a×b.若a、b不共線,則a×b的模是:
∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系.若a、b共線,則a×b=0.
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積.
a×a=0.
a∥b〈=〉a×b=0.
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒有除法,「向量ab/向量cd」是沒有意義的.
擴充套件資料:
向量的記法:印刷體記作粗體的字母(如a、b、u、v),書寫時在字母頂上加一小箭頭「→」。 如果給定向量的起點(a)和終點(b),可將向量記作ab(並於頂上加→)。
在空間直角座標系中,也能把向量以數對形式表示,例如oxy平面中(2,3)是一向量。
在物理學和工程學中,幾何向量更常被稱為向量。許多物理量都是向量,比如乙個物體的位移,球撞向牆而對其施加的力等等。與之相對的是標量,即只有大小而沒有方向的量。
一些與向量有關的定義亦與物理概念有密切的聯絡,例如向量勢對應於物理中的勢能。
研究向量空間一般會涉及一些額外結構。額外結構如下:
1 乙個實數或複數向量空間加上長度概念。就是範數稱為賦範向量空間。
2 乙個實數或複數向量空間加上長度和角度的概念,稱為內積空間。
3 乙個向量空間加上拓撲學符合運算的(加法及標量乘法是連續對映)稱為拓撲向量空間。
4 乙個向量空間加上雙線性運算元(定義為向量乘法)是個域代數。
概念:2 向量的模:有向線段ab的長度叫做向量的模,記作|ab|;
4 相等向量:長度相等且方向相同的向量叫做相等向量;
5 平行向量(共線向量):兩個方向相同或相反的非零向量叫做平行向量或共線向量,零向量與任意向量平行,即0//a;
6 單位向量:模等於1個單位長度的向量叫做單位向量,通常用e表示,平行於座標軸的單位向量習慣上分別用i、j表示。
7 相反向量:與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
平面向量是在二維平面內既有方向(direction)又有大小(magnitude)的量,物理學中也稱作向量,與之相對的是只有大小、沒有方向的數量(標量)。平面向量用a,b,c上面加乙個小箭頭表示,也可以用表示向量的有向線段的起點和終點字母表示。
向量的模的運算沒有專門的法則,一般都是通過餘弦定理計算兩個向量的和、差的模。多個向量的合成用正交分解法,如果要求模一般需要先算出合成後的向量。模是絕對值在二維和三維空間的推廣,可以認為就是向量的長度。
推廣到高維空間中稱為範數。
向量積,數學中又稱外積、叉積,物理中稱矢積、叉乘,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是乙個向量而不是乙個標量。並且兩個向量的叉積與這兩個向量和垂直。
其應用也十分廣泛,通常應用於物理學光學和計算機圖形學中。
11樓:騰禮巴綾
向量ab+向量ac=以
abac
為鄰邊的
平行四邊形abce
裡的向量ae,
而根據平行四邊形性質對角線交點互相平分所以d為ae中點
所以向量ab+向量ac=向量ae,即向量ab+向量ac=2向量ad
高中數學,複數,高中數學複數怎麼算
1 z 2 i 則 2 i 1 i 3 i 該複數的模為 10選a 設z a bi,則 1 2i 3 a bi 1 2i,再利用實部與實部相等,虛部與虛部相等求解 解 設z a bi 其中a,b為實數 則 1 2i 3 z 1 2i a bi a 2b 2a b i 又 1 2i 3 z 1 2i ...
高中數學題,複數,高中數學題,複數
對應的點在虛軸上,說明這個乘積是一個純虛數。a i 2 i 2a 1 2 a i,對於純虛數而言,其實部為0,所以得 2a 1 0,a 1 2,這個題目應該選d 在複平面所對應的點在虛軸上的意思是實部為0複平面與平面直角座標系進行對應,平面直角座標系有橫軸與縱軸,而複平面則是實軸與虛軸。實軸與橫軸對...
高中數學複數虛數高中數學什麼是複數,純虛數,共軛複數
1,共軛複數是例如a bi和a bi的形式,但是他們不是實數的時候也共軛,因此錯誤。2,充要條件是意思是指可以互相推出,當x i y i時,x yi 1 i也成立,因此不能從左推到右,錯誤。3,錯誤,a 0時不對應 1。兩個複數互為共軛複數,當且僅當其和為實數 錯兩個複數互為共軛複數,則和為實數.反...