高中數學,複數,高中數學複數怎麼算

2021-03-04 05:12:22 字數 4977 閱讀 6692

1樓:匿名使用者

1-z=2+i

則(2+i)*(-1+i)=-3+i 該複數的模為√10選a

2樓:相桃首覓丹

設z=a+bi,則(1+2i^3)(a+bi)=1+2i,再利用實部與實部相等,虛部與虛部相等求解

3樓:卞洽母痴靈

^解:設z=a+bi(其中a,b為實數)則(1+2i^3)z=(1-2i)(a+bi)=(a+2b)+(-2a+b)i

又(1+2i^3)z=1+2i

故(a+2b)+(-2a+b)i=1+2i由複數相等有

a+2b=1

-2a+b=2

解得a=-3/5

b=4/5

即z=(-3/5)+(4/5)i

4樓:信森樂正碧靈

(1+2i^3)z=1+2i

(1-2i)z=1+2i

z=(1+2i)/(1-2i)=-1/5+4i/5

5樓:植騫僕福

已知複數z滿足(1+2i^3)z=1+2i,則z=1

高中數學複數怎麼算

6樓:匿名使用者

加減法 加法法則 複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律, 即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則 複數的減法按照以下規定的法則進行:

設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。 2乘除法 乘法法則 規定複數的乘法按照以下的法則進行:

設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。

兩個複數的積仍然是乙個複數。 除法法則 複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:

可以把除法換算成乘法做,在分子分母同時乘上分母的共軛. 所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:

①設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi 分母有理化 ∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi. 由複數相等定義可知 cx-dy=a,dx+cy=b 解這個方程組,得 x=(ac+bd)/(c²+d²) y=(bc-ad)/(c²+d²) 於是有:

(a+bi)/(c+di)=(ac+bd)/(c²+d²)+i(bc-ad)/(c²+d²) ②利用共軛複數將分母實數化得(見右圖): 點評:①是常規方法;②是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.

所以可以分母實數化. 把這種方法叫做分母實數化法。 怎麼解復平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。

平面幾何問題的複數解法 複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證. 用複數方法解解平面幾何的基本思路是,首先運用複數表示復平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理. 1.

用於證三角形為正三角形 典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.

證明思路分析 以三角形的相重合的外心(重心),為原點o建立起復平面上的直角座標系.設321,,zzz表示三角形的三個頂點,其對應的複數是.,,321zzz因o為外心,故,||||||321rzzz又o為重心。

7樓:匿名使用者

法則加減法

加法法則

複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律,

即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則

複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。

2乘除法

乘法法則

規定複數的乘法按照以下的法則進行:

設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個複數的積仍然是乙個複數。 除法法則

複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛.

所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:

①設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi

∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi.

由複數相等定義可知 cx-dy=a,dx+cy=b

解這個方程組,得 x=(ac+bd)/(c²+d²) y=(bc-ad)/(c²+d²)

於是有:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+i(bc-ad)/(c²+d²)

②利用共軛複數將分母實數化得(見右圖):

點評:①是常規方法;②是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.所以可以分母實數化.

把這種方法叫做分母實數化法。

怎麼解復平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。

平面幾何問題的複數解法

複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證.

用複數方法解解平面幾何的基本思路是,首先運用複數表示復平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理.

1.用於證三角形為正三角形

典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.

高中數學什麼是複數,純虛數,共軛複數

8樓:曼諾諾曼

複數是形如z=a+bi(a,b均為實數)的數,其中a稱為實部,b稱為虛部,i稱為虛數單位。

純複數是複數的一種,即複數是由純複數與非純複數構成。複數的基本形式為a+bi。其中a和b為實數,i為虛數單位,其平方為-1。

共軛複數,兩個實部相等,虛部互為相反數的複數互為共軛複數。

擴充套件資料

高中數學複數運算法則:

1、加法法則

複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,則它們的和是(a+bi)+(c+di)=(a+c)+(b+d)i.兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律,即對任意複數z1,z2,z3,有:z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。

2、減法法則

複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,則它們的差是(a+bi)-(c+di)=(a-c)+(b-d)i.兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。

9樓:燕子歸巢月滿樓

複數是指能寫成如下形式的數a+bi,這裡a和b是實數,i是虛數單位(即-1開根)

當複數a+bi中a=0且b≠0時,z=bi,我們就將其稱為純虛數。

兩個實部相等,虛部互為相反數的複數互為共軛複數

10樓:匿名使用者

複數即實數+虛數 的混合共存 如:複數是指能寫成如下形式的數a+bi,這裡a和b是實數,i是虛數單位(即-1開根)。 或如z=a+bi的數稱為複數其中規定i為虛數單位,且i^2=i×i=-1(a,b是任意實數)a 為z的實部,b為z的虛部。

純虛數:當實部為0時,僅剩的虛部為純虛數,如:當a=0且b≠0時,z=bi,我們就將其稱為純虛數。

共軛複數:對於複數z=a+bi,稱複數z'=a-bi為z的共軛複數。即兩個實部相等,虛部(虛部不等於0)互為相反數的複數互為共軛複數.

複數z的共軛複數記作zˊ。表示方法為在字母z上方加一瞥線即共軛符號。

如:︱x+yi︱=︱x-yi︱ 這和實數計算時有區別。

11樓:匿名使用者

設z=a+bi,a,b∈r.

z為複數

a=0,b≠0時,z為純虛數

b=0時,z為實數,b≠0時,z為虛數.

z的共軛複數為a-bi.

高中數學題,複數,高中數學題,複數

對應的點在虛軸上,說明這個乘積是一個純虛數。a i 2 i 2a 1 2 a i,對於純虛數而言,其實部為0,所以得 2a 1 0,a 1 2,這個題目應該選d 在複平面所對應的點在虛軸上的意思是實部為0複平面與平面直角座標系進行對應,平面直角座標系有橫軸與縱軸,而複平面則是實軸與虛軸。實軸與橫軸對...

高中數學複數的演算法公式,高中數學複數的計算

1.z a bi z1 z2 a1 a2 b1 b2 i z1 z2按照多項式乘法就行 z1 z2 分母有理化再計算 2.z用模長和角度表示時,z1 z2 模長相乘 角度相加即可 高中數學複數的計算 1 複數在選修選材2 2中 2 選修2 2的各章內容如下 第一章 導數及其應用 第二章 推理與證明 ...

高中數學複數虛數高中數學什麼是複數,純虛數,共軛複數

1,共軛複數是例如a bi和a bi的形式,但是他們不是實數的時候也共軛,因此錯誤。2,充要條件是意思是指可以互相推出,當x i y i時,x yi 1 i也成立,因此不能從左推到右,錯誤。3,錯誤,a 0時不對應 1。兩個複數互為共軛複數,當且僅當其和為實數 錯兩個複數互為共軛複數,則和為實數.反...