線性代數求特徵值和特徵向量,線性代數中怎樣求特徵值和特徵向量?

2021-03-04 04:48:50 字數 5747 閱讀 4822

1樓:匿名使用者

p就是用斯密特正交化法,求到的單位特徵向量。p^-1不用我說了吧?

2樓:匿名使用者

題目沒有,看不出a和b關係,就沒法說p怎麼來的

3樓:匿名使用者

題目條件裡不是清楚的寫著矩陣p麼

顯然(p,e)=

0 1 0 1 0 0

1 0 1 0 1 0

0 0 1 0 0 1 r2-r3,交換r1r2~1 0 0 0 1 -1

0 1 0 1 0 0

0 0 1 0 0 1

得到p的逆矩陣p^-1=

0 1 -1

1 0 0

0 0 1

再去乘以三個a向量

得到的就是題目解答裡的結果了

4樓:獨吟獨賞獨步

p是a的特徵向量拼在一起的矩陣,p-1就是矩陣求逆。

線性代數中怎樣求特徵值和特徵向量?

5樓:曾經的乙隻豬

特徵值與特徵向量是線性代數的核心也是難點,在機器學習演算法中應用十分廣泛。要求線性代數中的特徵值和特徵向量,就要先弄清楚定義:

設 a 是 n 階矩陣,如果存在乙個數 λ 及非零的 n 維列向量 α ,使得aα=λαaα=λα成立,則稱 λ 是矩陣 a 的乙個特徵值,稱非零向量 α 是矩陣 a 屬於特徵值 λ 的乙個特徵向量。

觀察這個定義可以發現,特徵值是乙個數,特徵向量是乙個列向量,乙個矩陣乘以乙個向量就等於乙個數乘以乙個向量。

線性代數的時候給了矩陣是怎麼求特徵值和特徵函式的

6樓:匿名使用者

根據ax=λx,即(a-λe)x=o,令a-λe的行列式等於0求所有特徵值λ

然後將各個特徵值代入a-λe,求(a-λe)x=o這個其次線性方程組的乙個基礎解系,即x1,x2,...,xn,這些解向量就是特徵向量。

特徵函式主要看f(a)的形式,它是什麼形式,f(λ)一般就是什麼形式。

7樓:塗智華

對於n階矩陣a,如果存在λ和非零n階向量x,使得:ax=λx,那麼λ就是特徵值,x是對應於λ的特徵向量。

求λi-a的行列式為0的解即是λ的取值,其中i為n階單位矩陣。λi-a的行列式即為特徵函式。

8樓:匿名使用者

如果這個矩陣設為a,那麼是現求特徵值,再求特徵向量。就是解方程組ax=λx,移過來就是(a-λ)x=0,因為原來的ax裡面的x是無窮多個解,所以(a-λ)x=0也是和ax一樣的解,換句話說就是(a-λ)x=0有無窮多解,那麼這個方程的係數矩陣的行列式就是0(無窮多解的其次方程組,係數矩陣拍成的列向量線性無關,等價於矩陣行列式等於零)。第一步,令丨a-λ丨=0,這樣你能求出好幾個λ,這個特徵根就是特徵值,比如說a是4階的,你求出來的λ就有四個(必須是實數),這裡買呢可能會有重根但是要都寫出來,重複的算乙個特徵值;第二步,解四個方程(a-λi)x=0(i=1,2,3,4)的解,並且求出基礎解系,基礎解系是解裡面的乙個極大無關組,因為解有無窮多個,重複根你只要算一次就可以;第三步,求出的基礎解系裡面的每個列向量就是特徵向量,只不過你特徵值是對應的λ1,λ2,λ3,λ4這麼寫,你的這個列向量必須按照對應特徵值的順序列,也是從左往右寫成列向量α1,α2,α3,α4,;如果你對角矩陣,還要經過施密特正交化,這是第四步,這個運算比較麻煩,公式別記錯了,得到新的列向量組β1,β2,β3,β4,也是從左到右;第五步,對角的矩陣設成b,於是b=p轉置ap,p就是第四步求出的βi列向量組,要從左往右寫,p轉置是用p進行初等列變換得到,把單位矩陣寫在下面然後列變換。

最後算出p轉置之後不用再求p轉置ap去算b,b的元素就是那幾個特徵值(從左往右寫成對角陣)。

9樓:匿名使用者

對於矩陣a, ax=sx決定了特徵值s和特徵向量x

也可以說(a-se)x=0

要想x有非0解,det(a-se) =0,求解這個方程就得到特徵值,再帶回(a-se)x =0就可以求得特徵向量

10樓:匿名使用者

|λ|λ

|λ|λe-a| = |λ-1 1 a| |-2 λ-a 2| |a 1 λ-1| |λe-a| = |λ-1 1 a| |-2 λ-a 2| |a+1-λ 0 λ-a-1| |λe-a| = |λ+a-1 1 a| |0 λ-a 2| |0 0 λ-a-1| |λe-a| =(λ+a-1)(λ-a)(λ-a-1) 得特徵值 λ = -a+1, a, a+1 對於 λ = -a+1, λe-a = [-a 1 a] [-2 -2a+1

11樓:來個回答好的

求矩陣的特徵值與特徵向量。

解:由特徵方程

解得a有2重特徵值λ1=λ2=-2,有單特徵值λ3=4。

對於特徵值λ1=λ2=-2,解方程組(-2e-a)x=θ得同解方程組x1-x2+x3=0,解為x1=x2-x3(x2,x3為自由未知量)。分別令自由未知量

得基礎解系

所以a的對應於特徵值λ1=λ2=-2的全部特徵向量為x=k1ξ1+k2ξ2(k1,k2不全為零),可見,特徵值λ=-2的特徵向量空間是二維的。注意,特徵值在重根時,特徵向量空間的維數是特徵根的重數。

對於特徵值λ3=4,方程組(4e-a)x=q得同解方程組為

通解為令自由未知量x3=2得基礎解系ξ3

,所以a的對於特徵值λ3=4得全部特徵向量為x= k3ξ3。

線性代數 特徵值和特徵向量?

12樓:匿名使用者

ααt為乙個n維列向量乘乙個n維行向量,得到乙個n維方陣。這個方陣的每兩行肯定都是線性相關的,因為都是列向量中的乙個元素,依次乘行向量中的元素,作為對應位置的值。或者可以算一下,如圖所示,得到的n維矩陣對應的行列式,每行提出對應的公因子,得到乙個每行元素都相同的行列式,即秩為1.

當然也可以這麼想,r(ab)≤min(r(a),r(b)),因為a和b為列向量和行向量,r=1,所以r(ab)最大為1,又r(ab)明顯不是0,所以r(ab)=1.

13樓:有俠濮友

線性代數是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。

由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

特徵值是線性代數中的乙個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用。

數學上,線性變換的特徵向量(本徵向量)是乙個非退化的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。乙個線性變換通常可以由其特徵值和特徵向量完全描述。

特徵空間是相同特徵值的特徵向量的集合。

設a為n階矩陣,根據關係式ax=λx,可寫出(λe-a)x=0,繼而寫出特徵多項式|λe-a|=0,可求出矩陣a有n個特徵值(包括重特徵值)。將求出的特徵值λi代入原特徵多項式,求解方程(λie-a)x=0,所求解向量x就是對應的特徵值λi的特徵向量。

線性代數。求矩陣的特徵值與特徵向量

14樓:小樂笑了

解出特徵值之後,再代入特徵方程,求出基礎解系,得到特徵向量,例如:

線性代數,求特徵值和特徵向量

15樓:dear豆小姐

||特徵值  λ = -2, 3, 3,特徵向量

: (1    0    -1)^t、(3     0     2)^t。

解:|λe-a| =

|λ-1       -1          -3|

| 0         λ-3         0|

|-2         -2           λ|

|λe-a| = (λ-3)*

|λ-1        -3|

|-2           λ|

|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2

特徵值  λ = -2, 3, 3

對於 λ = -2, λe-a =

[-3      -1      -3]

[ 0      -5       0]

[-2      -2      -2]

行初等變換為

[ 1       1         1]

[ 0       1         0]

[ 0       2         0]

行初等變換為

[ 1       0         1]

[ 0       1         0]

[ 0       0         0]

得特徵向量 (1    0    -1)^t。

對於重特徵值 λ = 3, λe-a =

[ 2      -1      -3]

[ 0       0       0]

[-2      -2      3]

行初等變換為

[ 2      -1      -3]

[ 0      -3       0]

[ 0       0       0]

行初等變換為

[ 2       0      -3]

[ 0       1       0]

[ 0       0       0]

得特徵向量 (3     0     2)^t。

答:特徵值  λ = -2, 3, 3,特徵向量: (1    0    -1)^t、(3     0     2)^t。

擴充套件資料

特徵值是線性代數中的乙個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用

設 a 是n階方陣,如果存在數m和非零n維列向量 x,使得 ax=mx 成立,則稱 m 是a的乙個特徵值(characteristic value)或本徵值(eigenvalue)。

非零n維列向量x稱為矩陣a的屬於(對應於)特徵值m的特徵向量或本徵向量,簡稱a的特徵向量或a的本徵向量。

矩陣的特徵向量是矩陣理論上的重要概念之一,它有著廣泛的應用。數學上,線性變換的特徵向量(本徵向量)是乙個非簡併的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。

16樓:匿名使用者

|a-λ

e| =

1-λ 2 3

2 1-λ 3

3 3 6-λ

r1-r2

-1-λ 1+λ 0

2 1-λ 3

3 3 6-λ

c2+c1

-1-λ 0 0

2 3-λ 3

3 6 6-λ

= (-1-λ)[(3-λ)(6-λ)-18]= (-1-λ)[λ^2-9λ]

= λ(9-λ)(1+λ)

所以a的特徵值為 0, 9, -1

ax = 0 的基礎解系為: a1 = (1,1,-1)'

所以,a的屬於特徵值0的全部特徵向量為: c1(1,1,-1)', c1為非零常數.

(a-9e)x = 0 的基礎解系為: a2 = (1,1,2)'

所以,a的屬於特徵值9的全部特徵向量為: c2(1,1,2)', c2為非零常數.

(a+e)x = 0 的基礎解系為: a3 = (1,-1,0)'

所以,a的屬於特徵值-1的全部特徵向量為: c3(1,-1,0)', c3為非零常數.

線性代數特徵值求解,線性代數,求特徵值和特徵向量

把行列式得到關於lambda的多項式,然後用vieta定理 線性代數,求特徵值和特徵向量 特徵值 2,3,3,特徵向量 1 0 1 t 3 0 2 t。解 e a 1 1 3 0 3 0 2 2 e a 3 1 3 2 e a 3 2 6 2 3 2 特徵值 2,3,3 對於 2,e a 3 1 3...

求線性代數解答?矩陣的特徵值和特徵向量

因為2階方陣a有2個互異特徵值,所以a與對角矩陣相似。可逆矩陣p為 1,2 對角矩陣為diag 1,2 線性代數中怎樣求特徵值和特徵向量?特徵值與特徵向量是線性代數的核心也是難點,在機器學習演算法中應用十分廣泛。要求線性代數中的特徵值和特徵向量,就要先弄清楚定義 設 a 是 n 階矩陣,如果存在乙個...

線性代數中求相同特徵值對應不同的特徵向量的求法,是不是不一定

你好!首先,r s n r a r s 是基礎解系的秩,n是未知數的個數,r a 是化為最簡型增廣矩陣的秩,於是你截圖的那個方程的基礎解系的向量個數r s 3 1 2,所以有兩個基礎解系,的是其中一種,你寫的又是一種,只要這兩個向量線性無關,都可以作為基礎解系的一組解,於是特徵向量的通解或者說全體解...