高中數學必修四所有公式

2021-09-06 17:07:09 字數 8738 閱讀 8903

1樓:數學教師女

三角函式公式

兩角和公式

sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)

ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))

和差化積

2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb

ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb

某些數列前n項和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosb 注:角b是邊a和邊c的夾角

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與係數的關係 x1+x2=-b/a x1*x2=c/a 注:韋達定理

判別式b2-4ac=0 注:方程有兩個相等的實根

b2-4ac>0 注:方程有兩個不等的實根

b2-4ac<0 注:方程沒有實根,有共軛複數根

降冪公式

(sin^2)x=1-cos2x/2

(cos^2)x=i=cos2x/2

萬能公式

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

2樓:那愷欒含巧

公式一:

設α為任意角,終邊相同的角的同一三角函式的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與

-α的三角函式值之間的關係:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函式值之間的關係:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

誘導公式記憶口訣

※規律總結※

上面這些誘導公式可以概括為:

對於k·π/2±α(k∈z)的個三角函式值,

①當k是偶數時,得到α的同名函式值,即函式名不改變;

②當k是奇數時,得到α相應的餘函式值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇變偶不變)

然後在前面加上把α看成銳角時原函式值的符號。

(符號看象限)

例如:sin(2π-α)=sin(4·π/2-α),k=4為偶數,所以取sinα。

當α是銳角時,2π-α∈(270°,360°),sin(2π-α)<0,符號為「-」。

所以sin(2π-α)=-sinα

上述的記憶口訣是:

奇變偶不變,符號看象限。

公式右邊的符號為把α視為銳角時,角k·360°+α(k∈z),-α、180°±α,360°-α

所在象限的原三角函式值的符號可記憶

水平誘導名不變;符號看象限。

各種三角函式在四個象限的符號如何判斷,也可以記住口訣「一全正;二正弦;三為切;四余弦」.

這十二字口訣的意思就是說:

第一象限內任何乙個角的四種三角函式值都是「+」;

第二象限內只有正弦是「+」,其餘全部是「-」;

第三象限內切函式是「+」,弦函式是「-」;

第四象限內只有余弦是「+」,其餘全部是「-」.

其他三角函式知識:

同角三角函式基本關係

⒈同角三角函式的基本關係式

倒數關係:

tanα

·cotα=1

sinα

·cscα=1

cosα

·secα=1

商的關係:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關係:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函式關係六角形記憶法

六角形記憶法:(參看**或參考資料鏈結)

構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形為模型。

(1)倒數關係:對角線上兩個函式互為倒數;

(2)商數關係:六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。

(主要是兩條虛線兩端的三角函式值的乘積)。由此,可得商數關係式。

(3)平方關係:在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。

兩角和差公式

⒉兩角和與差的三角函式公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=------

1-tanα

·tanβ

tanα-tanβ

tan(α-β)=------

1+tanα

·tanβ

倍角公式

⒊二倍角的正弦、余弦和正切公式(公升冪縮角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα

tan2α=-----

1-tan^2(α)

半形公式

⒋半形的正弦、余弦和正切公式(降冪擴角公式)

1-cosα

sin^2(α/2)=-----

21+cosα

cos^2(α/2)=-----

21-cosα

tan^2(α/2)=-----

1+cosα

萬能公式

⒌萬能公式

2tan(α/2)

sinα=------

1+tan^2(α/2)

1-tan^2(α/2)

cosα=------

1+tan^2(α/2)

2tan(α/2)

tanα=------

1-tan^2(α/2)

萬能公式推導

附推導:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

(因為cos^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))

然後用α/2代替α即可。

同理可推導余弦的萬能公式。正切的萬能公式可通過正弦比余弦得到。

三倍角公式

⒍三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

3tanα-tan^3(α)

tan3α=------

1-3tan^2(α)

三倍角公式推導

附推導:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^2(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

即sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式聯想記憶

記憶方法:諧音、聯想

正弦三倍角:3元

減4元3角(欠債了(被減成負數),所以要「掙錢」(音似「正弦」))

余弦三倍角:4元3角

減3元(減完之後還有「餘」)

☆☆注意函式名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

和差化積公式

⒎三角函式的和差化積公式

α+βα-β

sinα+sinβ=2sin-----·cos----22

α+βα-β

sinα-sinβ=2cos-----·sin-----22

α+βα-β

cosα+cosβ=2cos------·cos------22

α+βα-β

cosα-cosβ=-2sin------·sin------22

積化和差公式

⒏三角函式的積化和差公式

sinα

·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα

·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα

·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα

·sinβ=-

0.5[cos(α+β)-cos(α-β)]

和差化積公式推導

附推導:

首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

這樣,我們就得到了積化和差的四個公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了積化和差的四個公式以後,我們只需乙個變形,就可以得到和差化積的四個公式.

我們把上述四個公式中的a+b設為x,a-b設為y,那麼a=(x+y)/2,b=(x-y)/2

把a,b分別用x,y表示就可以得到和差化積的四個公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

向量的運算

加法運算

ab+bc=ac,這種計算法則叫做向量加法的三角形法則。

已知兩個從同一點o出發的兩個向量oa、ob,以oa、ob為鄰邊作平行四邊形oacb,則以o為起點的對角線oc就是向量oa、ob的和,這種計算法則叫做向量加法的平行四邊形法則。

對於零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運算定律。

減法運算

與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數乘運算

實數λ與向量a的積是乙個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ

>0時,λa的方向和a的方向相同,當λ

<0時,λa的方向和a的方向相反,當λ

=0時,λa=0。

設λ、μ是實數,那麼:(1)(λμ)a

=λ(μa)(2)(λ

+μ)a=λa

+μa(3)λ(a±b)

=λa±λb(4)(-λ)a

=-(λa)

=λ(-a)。

向量的加法運算、減法運算、數乘運算統稱線性運算。

向量的數量積

已知兩個非零向量a、b,那麼|a||b|cos

θ叫做a與b的數量積或內積,記作a•b,θ是a與b的夾角,|a|cos

θ(|b|cos

θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。

a•b的幾何意義:數量積a•b等於a的長度|a|與b在a的方向上的投影|b|cos

θ的乘積。

兩個向量的數量積等於它們對應座標的乘積的和。

高中數學這些所有母們的意思,高中數學這些所有字母們的意思

多數情況下 在三角函式中表示變數角x的係數,如y sin x t 2 在代數中是求積符號.在代數中是求和符號.請對照理解 圓周率。立體幾何表示平面。在代數中表示常數。在解析幾何中表示定比係數或待定係數。角,輔助角。在微積分的極限定義中表示充分小的正數。同 角,輔助角。都是希臘字母,和abcd一樣的用...

高中數學必修一函式求定義域,高中數學必修一 定義域與值域怎麼求?有哪些方法?

f x 是函式的符號bai,它代表 du函式圖象上每zhi乙個點的縱dao 座標的數值版,因此函式影象權上所有點的縱座標構成乙個集合,這個集合就是函式的值域。x是自變數,它代表著函式圖象上每一點的橫座標,自變數的取值範圍就是函式的定義域。對代數式的認識。每乙個代數式它的本質就是乙個函式。像x2 1這...

高中數學必修 2 知識點總結,高中數學必修二知識點總結

怎樣學好高中數學?首先要摘要答題技巧 現在數學這個科目也是必須學習 的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些型別?老師在上數學課 我相信數學你們應該都知道吧,不管是在什麼時候,不管是學習上面...