分別討論當xx和x時函式e的極限是否存在

2021-03-04 09:00:54 字數 5604 閱讀 4050

1樓:陽光的周述正

x→+∞,x→∞時 函式e^的極限不存在

x→-∞ 函式e^的極限存在且為0

希望可以幫到你

證明:若x→+∞及x→-∞時,函式f(x)的極限都存在且都等於a,則lim(x→∞)f(x)=a

2樓:匿名使用者

|根據定義

lim(x→+∞)f(x)=a⇒對任意e>0,存在x1>0,當x>x1時,|f(x)-a|0,存在x2>0,當x<-x2時,|f(x)-a|x時,|f(x)-a|

即lim(x→∞)f(x)=a

3樓:萌寶寶

取x1和x2最小的那個吧

x趨向於0 這個函式的左右極限怎麼求 ,從這個題目延伸過來 單一的乙個函式的趨向於xo時的左右極限怎麼求?

4樓:匿名使用者

該bai函式在 x = 0的左右極

限分du別是:

zhi  f(0-0) = lim(x→0-0)f(x) = 1,

f(0+0) = lim(x→0+0)f(x) = 0。

由dao

此可以看出:一專

個函式的趨向於xo時的左屬右極限,就是分別討論當x→x0-0和x→x0+0時的極限。

5樓:匿名使用者

該函式在 x = 0的左右極限分別是:

f(0-0) = lim(x→0-0)f(x) = 1,f(0+0) = lim(x→0+0)f(x) = 0。

乙個函式的趨向於xo時的內左右極限,就是分別討論當x→x0-和容x→x0+時的極限。

6樓:西域牛仔王

當 x→0- 時,1/x→ -∞,因此 e^(1/x)→0 ,因此 y→1 ;

當 x→0+ 時,1/x→+∞,因此 e^(1/x)→+∞ ,y→0 。

請問極限的概念是什麼?

7樓:匿名使用者

極限的定義分為四個部分:

1、對任意的ε>0:ε在定義中的作用就是刻畫出在x→x0時,f(x)可以無限接近於常數a,也就是∣f(x)-a∣可以任意小。為了達到這一要求,所以ε必須可以足夠小。

(考試中經常在ε上做文章)

2、存在δ>0:δ就是這個鄰域的半徑,x→x0所能取到的所有點就是(x0-δ,x0)∪(x0,x0+δ),這裡x取不到x0.但是這個鄰域δ到底有多大、距離x0有多遠,我們不知道,也沒有必要知道,只要知道δ是很小的乙個數就可以啦。

3、0<∣x-x0∣<δ:自變數x→x0時,再次強調一下,x取不到x0這個點,但是可以取到x0附近和兩側的所有點。這就涉及到鄰域的概念,鄰域通俗講就是以點x0為中心的附近和兩側所有點,是乙個區域性概念。

4、∣f(x)-a∣<ε:既然ε可以足夠小,則f(x)可以無限接近於常數a,也就是f(x)→a,這裡需要注意一點,雖然自變數x不能取到x0這個點,但是因變數f(x)是可以取到a的。

特別注意:函式在一點的極限存不存在和函式在這個點有沒有定義沒有關係。

擴充套件資料

極限的性質:

1、唯一性:存在即唯一

關於唯一性,需要明確x趨向於無窮,意味著x趨向於正無窮並且x趨向於負無窮;同理,x→xo,意味著x趨向於xo正且趨向於x0負。

比如:x趨向於無窮的時候,e^x的極限就不存在,因為x趨向於正無窮的時候e^x是無窮,x趨向於負無窮的時候e^x是0,根據極限存在的唯一性,所以這個極限不存在。

2、區域性有界性:存在必有界

極限存在只是函式有界的充分條件,而非必要條件,即函式有界但函式極限不一定存在。

判別有界性的方法

(1)理論法:函式在閉區間上連續,則函式必有界。

(2)計算法:函式在開區間上連續且左右極限都存在,則函式有界。

(3)四則運算法:有限個有界函式的和、差、積必有界。

3、區域性保號性:保持不等號的方向不變

極限大於零則在x→x0中函式大於零,把極限符號可以直接去掉,俗稱「脫帽法」。函式非負,則在極限存在的條件下,極限非負。這個結論成立的前提條件一定不能忘,一定要驗證一下函式極限是否存在。

8樓:閃亮登場

極限在高等數學中,極限是乙個重要的概念。

極限可分為數列極限和函式極限,分別定義如下。

首先介紹劉徽的"割圓術",設有一半徑為1的圓,在只知道直邊形的面積計算方法的情況下,要計算其面積。為此,他先作圓的內接正六邊形,其面積記為a1,再作內接正十二邊形,其面積記為a2,內接二十四邊形的面積記為a3,如此將邊數加倍,當n無限增大時,an無限接近於圓面積,他計算到3072=6*2的9次方邊形,利用不等式an+1n時,不等式

|xn - a|<ε

都成立,那麼就成常數a是數列|xn|的極限,或稱數列|xn|收斂於a。記為lim xn = a 或xn→a(n→∞)

數列極限的性質:

1.唯一性:若數列的極限存在,則極限值是唯一的;

2.改變量列的有限項,不改變量列的極限。

幾個常用數列的極限:

an=c 常數列 極限為c

an=1/n 極限為0

an=x^n 絕對值x小於1 極限為0

函式極限的專業定義:

設函式f(x)在點x。的某一去心鄰域內有定義,如果存在常數a,對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ 時,對應的函式值f(x)都滿足不等式:

|f(x)-a|<ε

那麼常數a就叫做函式f(x)當x→x。時的極限。

函式極限的通俗定義:

1、設函式y=f(x)在(a,+∞)內有定義,如果當x→+∽時,函式f(x)無限接近乙個確定的常數a,則稱a為當x趨於+∞時函式f(x)的極限。記作lim f(x)=a ,x→+∞。

2、設函式y=f(x)在點a左右近旁都有定義,當x無限趨近a時(記作x→a),函式值無限接近乙個確定的常數a,則稱a為當x無限趨近a時函式f(x)的極限。記作lim f(x)=a ,x→a。

函式的左右極限:

1:如果當x從點x=x0的左側(即x〈x0)無限趨近於x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的左極限,記作x→x0-limf(x)=a.

2:如果當x從點x=x0右側(即x>x0)無限趨近於點x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的右極限,記作x→x0+limf(x)=a.

注:若乙個函式在x(0)上的左右極限不同則此函式在x(0)上不存在極限

函式極限的性質:

極限的運算法則(或稱有關公式):

lim(f(x)+g(x))=limf(x)+limg(x)

lim(f(x)-g(x))=limf(x)-limg(x)

lim(f(x)*g(x))=limf(x)*limg(x)

lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等於0 )

lim(f(x))^n=(limf(x))^n

以上limf(x) limg(x)都存在時才成立

lim(1+1/x)^x =e

x→∞無窮大與無窮小:

乙個數列(極限)無限趨近於0,它就是乙個無窮小數列(極限)。

無窮大數列和無窮小數列成倒數。

兩個重要極限:

1、lim sin(x)/x =1 ,x→0

2、lim (1 + 1/x)^x =e ,x→∞ (e≈2.7182818...,無理數)

9樓:假裝隨便

數列型:對任意#,總存在乙個%,當x大於%時,有f(x)到某個值的距離小於任意的#

點型:對任意#,總存在乙個%,當x到某個點的距離小於%時,有f(x)到某個值的距離小於任意的#

無窮型:對任意#,總存在乙個%,當x到小於%的絕對值時,有f(x)到某個值的距離小於任意的#

/ 其中#規定無限接近的概念

/ %規定了x的範圍:是無窮的大;還是某點領域;還是無窮

10樓:匿名使用者

極限基本解釋

1.是指無限趨近於乙個固定的數值。

2.數學名詞。在高等數學中,極限是乙個重要的概念。

極限可分為數列極限和函式極限.

學習微積分學,首要的一步就是要理解到,「極限」引入的必要性:因為,代數是人們已經熟悉的概念,但是,代數無法處理「無限」的概念。所以為了要利用代數處理代表無限的量,於是精心構造了「極限」的概念。

在「極限」的定義中,我們可以知道,這個概念繞過了用乙個數除以0的麻煩,而引入了乙個過程任意小量。就是說,除數不是零,所以有意義,同時,這個過程小量可以取任意小,只要滿足在δ的區間內,都小於該任意小量,我們就說他的極限為該數——你可以認為這是投機取巧,但是,他的實用性證明,這樣的定義還算比較完善,給出了正確推論的可能。這個概念是成功的。

數列極限標準定義:對數列,若存在常數a,對於任意ε>0,總存在正整數n,使得當n>n時,|xn-a|<ε成立,那麼稱a是數列的極限。

函式極限標準定義:設函式f(x),|x|大於某一正數時有定義,若存在常數a,對於任意ε>0,總存在正整數x,使得當x>x時,|f(x)-a|<ε成立,那麼稱a是函式f(x)在無窮大處的極限。

設函式f(x)在x0處的某一去心鄰域內有定義,若存在常數a,對於任意ε>0,總存在正數δ,使得當

|x-xo|<δ時,,|f(x)-a|<ε成立,那麼稱a是函式f(x)在x0處的極限。

極限的性質

性質1 唯一性   性質2 有界性   性質3 保號性   性質4 夾逼準則

擴充套件閱讀:

1 《高等數學(一)》全國高等教育自學考試指定教材[2023年版]。

2 武漢大學-章學誠-2023年2月

3 高等數學同濟五版

11樓:深海魚

在數學中,如果某個變化的量無限地逼近於乙個確定的數值,那麼該定值就叫做變化的量的極限。

12樓:董青

說開始,時間(鐘)還沒動,繞宇宙的物體已經跑2圈了。

13樓:長芳蕙白長

函式極限的一般概念:在自變數的某個變化過程中,如果對應的函式值無限接近於某個確定的數,那麼這個確定的數就叫做在這個變化過程中的函式極限。

主要有兩種情形:

1.自變數x任意的接近於有限值x0

或者說趨於有限值x0

對應函式值的變化情形

2.x的絕對值趨於無窮,對應於函式值的變化。

可以把數列看成是自變數為n的函式,數列的極限就是n趨於正無窮時數列收斂的值。可以說是函式極限的乙個特殊情況。

求函式極限的方法有幾種?具體怎麼求?

14樓:您輸入了違法字

1、利用函式的連續性求函式的極限(直接帶入即可)如果是初等函式,且

專點在的定屬義區間內,那麼,因此計算當時的極限,只要計算對應的函式值就可以了。

2、利用有理化分子或分母求函式的極限

a.若含有,一般利用去根號

b.若含有,一般利用,去根號

3、利用兩個重要極限求函式的極限

()4、利用無窮小的性質求函式的極限

性質1:有界函式與無窮小的乘積是無窮小

性質2:常數與無窮小的乘積是無窮小

性質3:有限個無窮小相加、相減及相乘仍舊無窮小5、分段函式的極限

求分段函式的極限的充要條件是:

當x趨於0時,ln1xx的極限

法1 當x趨近於0時,ln 1 x 跟x是等價無窮小,故lim ln 1 x x 1 法2 極限是0 0型,故可以用洛比達法則 lim ln 1 x x lim 1 1 x 1 lim 1 1 x 1 題目出錯了吧 應該是x趨於無窮大時,不然沒有極限 也從沒聽說這種問法 那麼x趨於無窮大時 1 x ...

求當x趨於無窮大時,121xx的極限

後面部分是1 2 1 x 2 x 1 x 1 1 x用0代替 求limx趨於無窮大 2x 3 2x 1 x 1 的極限。極限來簡自介 極限 是bai數學中的分支 du 微積分的基礎概zhi念,廣義的 極限 是指 無限 dao靠近而永遠不能到達 的意思。數學中的 極限 指 某乙個函式中的某乙個變數,此...

求函式極限 lim (1 1 x 3 1 x 3當x1時的極限

1 1 x 3 1 x 3 1 1 x 3 1 x 1 x x 2 1 x x 2 3 1 x 1 x x 2 x 2 x 2 1 x 1 x x 2 x 2 x 1 1 x 1 x x 2 x 2 x 2 x 1 lim 1 1 x 3 1 x 3 當x 1時的極限 lim x 2 x 2 x 1...