1樓:病假微
^切線為y=x/e (2)y型積分區域0≤y≤1,ey≤x≤e^y s=∫(e^y-ey)dy=e/2-1 (3) 體積=以y=x/e為界繞x軸旋轉的圓錐體積 - 以y=lnx為界繞x旋轉的體積, v=v1-v2 dv1=π(x/e)^2dx 表示微元體積=以x/e為半徑,以dx為高的微元圓柱體積 dv2=π(lnx)^2dx,以lnx為半.
高數-利用導數求最大值和最小值
2樓:老伍
既然求導後,解得了x=-2和x=1,那不就是說這兩個中一定是最大值和最小值嗎?這句話你理解錯了,如果f(x)定義域是r,你說的說對了,現在的定義域是[-3,4]
所以求出兩個零點x=-2 與x=1後,要比較f(-2)及f(1)及區間[-3,4]中兩個端點f(-3)及f(4)的值的大小,
誰大,就是最大值,誰小就是最小值。
3樓:拜讀尋音
輔導教材上說求導後一定是最大值或者最小值啊?
這個說法肯定不對,導數等於0的點,表明該函式可能存在極值點。
一階等於0只是有極值的必要條件,不是充分條件,也可能是拐點!
4樓:亓玉巧邴鶯
因為f'(c)=0表示是函式在值c點得到極值,當出現極值後,f'(c)的右邊值必然會出現大於0或者小於0的情況,f『』(c)(導函式的導數)就是描述f'(c)變化的函式,與f'(c)描述f(c)的原理是一樣的
怎麼求三角函式的最大值和最小值,比如如
5樓:
不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式
你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)
也就是使sinx和sint有相同的形式
t=π/2時 sint 即sin(2x-π/6)有最大值
此時2x-π/6=t=π/2 so x=π/3
求sint的單調區間得出關於t的區間
然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間
sint t=不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式
你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)
也就是使sinx和sint有相同的形式
t=π/2時 sint 即sin(2x-π/6)有最大值
此時2x-π/6=t=π/2 so x=π/3
求sint的單調區間得出關於t的區間
然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間
t=90度 求最大值點阿
導數求最大值最小值問題 40
6樓:匿名使用者
h=1.5+(15cosφ-3)tanφ-2=3(5sinφ-tanφ)-0.5
求h的最大值即可
h'=3(5cosφ-sec²φ)=0
cosφ=(1/5)^(1/3)代入h可得最大值
7樓:
綜合運用三角函式,萬能置換公式,導數,極值,凹凸性,單調性知識求解。
如圖所示:
怎麼求三角函式最大最小值
8樓:o客
求三角函式的最值,從本質上講,與求其他函式的最值方法一樣。但是,三角函式最值可以綜合它的龐大的公式來求。最常用的有:
1.觀察法。簡單的,如sinx-1,2cosx+1等,可由它們的性質,直接求出。
2.配方法。f(x)是二次函式,f(sinx)的最值,可用配方法。
3.化簡法。最常見的考試題,就是較複雜的含有正弦、余弦的三角函式解析式求最值。先化成asin(ωx+φ)的形式。再求最值。
4.導數法。如y=x/2 +sinx。
有時要綜合上述多種方法,親。
9樓:仁晏五淑然
方法一:
第一步,先明確定義域;
第二步,在圖上找出來。
方法二:求導,這一點也是先要找到定義域。
然後找出極值點,在極值點和定義域端點處就可以找到最值啦!
求函式的最大值和最小值的方法。
10樓:藍藍藍
常見的求最值方法有:
1、配方法: 形如的函式
,根據二次函式的極值點或邊界點的取值確定函式的最值.
2、判別式法: 形如的分式函式, 將其化成係數含有y的關於x的二次方程.由於, ∴≥0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.
3、利用函式的單調性 首先明確函式的定義域和單調性, 再求最值.
4、利用均值不等式, 形如的函式, 及≥≤, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.
5、換元法: 形如的函式, 令,反解出x, 代入上式, 得出關於t的函式, 注意t的定義域範圍, 再求關於t的函式的最值. 還有三角換元法, 引數換元法.
6、數形結合法 形如將式子左邊看成乙個函式, 右邊看成乙個函式, 在同一座標系作出它們的圖象, 觀察其位置關係, 利用解析幾何知識求最值. 求利用直線的斜率公式求形如的最值.
7、利用導數求函式最值2.首先要求定義域關於原點對稱然後判斷f(x)和f(-x)的關係:若f(x)=f(-x),偶函式;若f(x)=-f(-x),奇函式。
如:函式f(x)=x^3,定義域為r,關於原點對稱;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函式.又如:
函式f(x)=x^2,定義域為r,關於原點對稱;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函式.
擴充套件資料:
一般的,函式最值分為函式最小值與函式最大值。簡單來說,最小值即定義域中函式值的最小值,最大值即定義域中函式值的最大值。
函式最大(小)值的幾何意義——函式影象的最高(低)點的縱座標即為該函式的最大(小)值。
最小值設函式y=f(x)的定義域為i,如果存在實數m滿足:①對於任意實數x∈i,都有f(x)≥m,②存在x0∈i。使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最小值。
最大值設函式y=f(x)的定義域為i,如果存在實數m滿足:①對於任意實數x∈i,都有f(x)≤m,②存在x0∈i。使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最大值。
一次函式
一次函式(linear function),也作線性函式,在x,y座標軸中可以用一條直線表示,當一次函式中的乙個變數的值確定時,可以用一元一次方程確定另乙個變數的值。
所以,無論是正比例函式,即:y=ax(a≠0) 。還是普通的一次函式,即:
y=kx+b (k為任意不為0的常數,b為任意實數),只要x有範圍,即z《或≤x<≤m(要有意義),那麼該一次函式就有最大或者最小或者最大最小都有的值。而且與a的取值範圍有關係
當a<0時
當a<0時,則y隨x的增大而減小,即y與x成反比。則當x取值為最大時,y最小,當x最小時,y最大。例:
2≤x≤3 則當x=3時,y最小,x=2時,y最大
當a>0時
當a>0時,則y隨x的增大而增大,即y與x成正比。則當x取值為最大時,y最大,當x最小時,y最小。例:
2≤x≤3 則當x=3時,y最大,x=2時,y最小 [3]
二次函式
一般地,我們把形如y=ax^2+bx+c(其中a,b,c是常數,a≠0)的函式叫做二次函式(quadratic function),其中a稱為二次項係數,b為一次項係數,c為常數項。x為自變數,y為因變數。等號右邊自變數的最高次數是2。
注意:「變數」不同於「未知數」,不能說「二次函式是指未知數的最高次數為二次的多項式函式」。
「未知數」只是乙個數(具體值未知,但是只取乙個值),「變數」可在一定範圍內任意取值。在方程中適用「未知數」的概念(函式方程、微分方程中是未知函式,但不論是未知數還是未知函式,一般都表示乙個數或函式——也會遇到特殊情況),
但是函式中的字母表示的是變數,意義已經有所不同。從函式的定義也可看出二者的差別.如同函式不等於函式關係。
而二次函式的最值,也和一次函式一樣,與a扯上了關係。
當a<0時,則影象開口於y=2x² y=½x²一樣,則此時y 有最大值,且y只有最大值(聯絡影象和二次函式即可得出結論)
此時y值等於頂點座標的y值
當a>0時,則影象開口於y=-2x² y=-½x²一樣,則此時y 有最小值,且y只有最小值(聯絡影象和二次函式即可得出結論)
此時y值等於頂點座標的y值
11樓:匿名使用者
求函式的最大值和最小值的方法,這個題賊請老師給解答一下吧,我答不上來呀,謝謝老師吧!
12樓:麥平樂扶宕
有好多呢,單調性法,配方法,換元法,利用已知函式求值域,還可利用判別式來求,但最普遍的方法是求導.
13樓:萬家燈火
求函式的最大值與最小值的方法需要掌握技巧是很簡單的
14樓:匿名使用者
畫出影象,即可看出最
小值是頂點的縱座標軸,無最小值選畫圖,你會發現y=1/x在(0,+無窮大)是減函式,則在x∈[1,3]上仍是減函式,在x=1時取最大值,在x=3時取最小值,可以通過畫圖,單調性,及求導的方法
15樓:匿名使用者
[小花]求函式最大值和最小值,學霸教你用配方法,8年級數學
16樓:玉麒麟大魔王
求函式最大值和最小值的方法是函式找一數學老師吧。
17樓:公尺宜章白風
二次函式,主要看二次項係數,大於0,有最小值,小於0,有最大值。
求函式的最大最小值方法可以用公式,4a分子4ac-b方。或者用配方法。
18樓:戎宸在密思
將函式變形為,由於分母,可得函式的定義域為.對分類討論:當時,原式變為,可得得.當時,上式對於任意實數都成立,可得,解出即可.
解:將函式變形為,
分母,函式的定義域為.
當時,原式變為,解得.因此也滿足題意.
當時,上式對於任意實數都成立,因此,
化為,解得,且.
綜上可知:.
當時,函式取得最大值;
當時,函式取得最小值.
本題考查了利用"判別式法"求分式型別函式的最值,考查了推理能力和計算能力,考查了分類討論的思想方法,屬於難題.
19樓:匿名使用者
先像初中一樣,配成頂點式,即y=a(x-k)^2+b
其頂點就是(k,b),然後根據函式的單調性,在頂點處取得最大或最小值。
用導數怎樣求這段函式的最大最小值
20樓:星光點點
求導數等於零的點,把這些點對應的函式值與定義域區間兩端點對應的函式值比較,取其中的最大值和最小值,也就是這段函式的最大值與最小值。
三角函式最大值和最小值求法,三角函式最大值和最小值求法
1 化為乙個三角函式。如 f x sinx 3cosx 2sin x 3 最大值是2,最小值是 2 2 利用換元法化為二次函式。如 f x cosx cos2x cosx 2cos x 1 2t t 1 其中t cosx 1,1 則f x 的最大值是當t cosx 1時取得的,是2,最小值是當t c...
三角函式求助,三角函式問題求助 。。。。。。
1 sin 6 cos 6 是怎麼轉變成1 sin cos 3sin cos sin cos 解 sin cos sin 6 3sin cos 3sin cos cos 6 這裡用了公式 a b a 3a b 3ab b 1 sin 6 cos 6 1 sin cos 3sin cos 3sin c...
求三角函式最值,求詳細步驟,數學三角函式最值怎麼求的求詳細
配方很容易的 y cosx 3 2 2 1 4 就是求二次函式y t 3 2 2 1 4 在區間 1,1 上的最值了 第二個先把y變形一下 y 1 sin 2x sinx sinx 1 2 2 5 4那麼當 x pai 4 sinx的取值是 根號2 2,根號2 2 那麼就是求y t 1 2 2 5 ...