1樓:匿名使用者
可以這麼理解,座標知道吧,x軸和y軸,以圓點為中心,半徑為1畫圓,設從原點作射線與x軸正向成的角度為θ,射線與圓的交點為a,設a的座標為(a,b),此時:sinθ=b,cosθ=a,tanθ=b/a
當角度θ大於90度小於180度時,很明顯a<0,所以cosθ<0,b>0,所以sinθ>0;當角度θ大於180度小於270度時,a<0,b<0,sinθ,cosθ都小於0;當角度θ大於270度小於360度時,a>0,b<0,sinθ小於0,cosθ大於0;
當θ=90度時,交點為(0,1),故sin90度=1,cos90度=0,tan90度=1/0,無窮大。
當θ=0度時,交點為(1,0),故sin0=0,cos0=1,tan0=0;
當θ=180度時,交點為(-1,0),故sin180度=0,cos180度=-1,tan180度=0。
2樓:匿名使用者
同角三角函式間的基本關係式:
·平方關係:
sin^2(α
)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關係:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關係:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函式恒等變形公式
·兩角和與差的三角函式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=
3樓:匿名使用者
在第一象限是角度越大只越大,第二第三象限相反,第四象限掙,一二正,三四副
已知三角函式tan,sin或cos求角度x
4樓:匿名使用者
設 a,b,c,x均∈r, 且已知角度x對應的函式值.
求角度x.
解: 當 sinx=a, 則 x=2π+arcsina,tanx=b, x=kπ+arctanb.
cosx=c, x=2kπ+arccosc. 式中, k∈z. π為
圓周率.
---這就是已知專
函式值求屬對應角度的公式.
三角函式中:tan ,sin,cos,cot各表示什麼意思
5樓:匿名使用者
如圖比如以角a為例
sina=對邊:斜邊=bc:ac
cosa=臨邊:斜邊=ab:ac
tana=對邊:臨邊=bc:ab
cota=臨邊:對邊=ab:bc
tan ,sin,cos,cot之間的關係:
倒數關係
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商數關係
tanα=sinα/cosα
cotα=cosα/sinα
平方關係
sinα²+cosα²=1
1+tanα²=secα²
1+cotα²=cscα²
以下關係,函式名不變,符號看象限
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
以下關係,奇變偶不變,符號看象限
sin(90°-α)=cosα
cos(90°-α)=sinα
tan(90°-α)=cotα
cot(90°-α)=tanα
sin(90°+α)=cosα
cos(90°+α)=sinα
tan(90°+α)=-cotα
cot(90°+α)=-tanα
sin(270°-α)=-cosα
cos(270°-α)=-sinα
tan(270°-α)=cotα
cot(270°-α)=tanα
sin(270°+α)=-cosα
cos(270°+α)=sinα
tan(270°+α)=-cotα
cot(270°+α)=-tanα
積化和差公式
sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)]
cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]
cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)]
sinα ·sinβ=(1/2)*[cos(α+β)-cos(α-β)]
和差化積公式
sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2]
sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]
cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2]
cosα-cosβ=-22*[sin(α+β)/2]*[sin(α-β)/2]
三倍角公式
sin3α=3sinα-4sinα³
cos3α=4cosα³-3cosα
兩角和與差的三角函式公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)==(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ )/(1+tanα ·tanβ)
6樓:獨自悟道
sin正弦函式
,cos余弦函式,tan正切函式,cot餘切函式
在直角三角形中,當平面上的三點a、b、c的連線,ab、ac、bc,構成乙個直角三角形,其中∠acb為直角。對∠bac而言,對邊(opposite)a=bc、斜邊(hypotenuse)c=ab、鄰邊(adjacent)b=ac,則存在以下關係:
sina=a/c,cosa=b/c,tana=a/b,cota=b/a ,seca=c/b,csca=c/a,
正切函式、餘切函式曾被寫作tg、ctg,現已不用這種寫法。
三角函式是數學中常見的一類關於角度的函式。也可以說以角度為自變數,角度對應任意兩邊的比值為因變數的函式叫三角函式,三角函式將直角三角形的內角和它的兩個邊長度的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。三角函式在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究週期性現象的基礎數學工具。
在數學分析中,三角函式也被定義為無窮級數或特定微分方程的解,允許它們的取值擴充套件到任意實數值,甚至是復數值。
常見的三角函式包括正弦函式、余弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式sec、餘割函式csc、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。
三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函式為模版,可以定義一類相似的函式,叫做雙曲函式。常見的雙曲函式也被稱為雙曲正弦函式、雙曲余弦函式等等。
三角函式(也叫做圓函式)是角的函式;它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴充套件到任意正數和負數值,甚至是復數值。
三角函式角度,三角函式sin,cos,tan各等於什麼邊比什麼邊
解 有tana 2.5 5 0.5,即a arc tan0.5 過程如下 1 首先 調出計算機裡面的計算器,點選 檢視 選中 科學型 計算器的介面變成下圖 2 再 在該介面輸入0.5,計算機介面 3 然後 點選按鍵 輸入求反的符號,切換介面 介面變成 4 最後 點選按鍵 介面顯示結果,為 所得到結果...
數學三角函式
把後面的cos2x改寫成sin 2 2x 然後直接套用sin sin 2cos 2 2 sin 2 2 即可知道,原式 2cos 4 sin 2x 4 即根號2倍的sin 2x 4 搞定 sin2x cos2x 2sin2xcos 4 2cos2xsin 4 2sin 2x 4 由書上公式還可以化成...
在三角函式中sincostan各在什麼象限是正的
三角函式反應在座標系上,乙個象限代表 2,所以第一象限是0到 2,第二象限是 2到 第三象限是 到 3 2,第四象限是 3 2到2 所以4 3應該是在第三象限,第三象限對應的x y都是負數,所以正弦 余弦都是負數,只有正切和餘切是正數 sin,cos,tan象限的符號分別是什麼?第一象限,sina ...