三角函式公式大全,三角函式公式總結

2022-02-04 22:45:59 字數 6781 閱讀 8686

1樓:小溪閒談影視劇

sina=a/c (即角a的對邊比斜邊);

cosa=b/c (即角a的鄰邊比斜邊);

tana=a/b (即角a的對邊比鄰邊);

cota=b/a (即角a的鄰邊比對邊);

seca=c/b (即角a的斜邊比鄰邊);

csca=c/a (即角a的斜邊比對邊);

sinasina+sinbsinb=1;

sina/cosa=tana;tana=1/cota

三角函式公式總結

三角函式公式大全

2樓:景煊承恩霈

^^平方關係

sin^2(α)

cos^2(α)=1

cos(2a)=cos^2(a)-sin^2(a)=1-

2sin^2(a)=2cos^2(a)-1

sin(2a)=2sin(a)cos(a)

tan^2(α)

1=1/cos^2(α)

2sin^2(a)=1-cos(2a)

cot^2(α)

1=1/sin^2(a)

積的關係

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

倒數關係

tanα

·cotα=1

sinα

·cscα=1

cosα

·secα=1

商的關係

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

sinβ

cosβ

tanβ

cotβ

secβ

cscβ

360°k

αsinα

cosα

tanα

cotα

secα

cscα

90°-α

cosα

sinα

cotα

tanα

cscα

secα

90°α

cosα

-sinα

-cotα

-tanα

-cscα

secα

180°-α

sinα

-cosα

-tanα

-cotα

-secα

cscα

180°

α-sinα

-cosα

tanα

cotα

-secα

-cscα

270°-α

-cosα

-sinα

cotα

tanα

-cscα

-secα

270°

α-cosα

sinα

-cotα

-tanα

cscα

-secα

360°-α

-sinα

cosα

-tanα

-cotα

secα

-cscα

﹣α-sinα

cosα

-tanα

-cotα

secα

-cscα

兩角和與差的三角函式

cos(α

β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ

sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α

β)=(tanα

tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1

tanα·tanβ)

和差化積

公式sinα

sinβ=2sin[(α

β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α

β)/2]sin[(α-β)/2]

cosα

cosβ=2cos[(α

β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α

β)/2]sin[(α-β)/2]

積化和差公式

sinα·cosβ=(1/2)[sin(α

β)sin(α-β)]

cosα·sinβ=(1/2)[sin(α

β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α

β)cos(α-β)]

sinα·sinβ=-(1/2)[cos(α

β)-cos(α-β)]

倍角公式

sin(2α)=2sinα·cosα=2/(tanα

cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2*secα·cscα

三倍角公式

sin(3α)

=3sinα-4sin^3α

=4sinα·sin(60°

α)sin(60°-α)

cos(3α)

=4cos^3α-3cosα

=4cosα·cos(60°

α)cos(60°-α)

tan(3α)

=(3tanα-tan^3α)/(1-3tan^2α)

=tanαtan(π/3

α)tan(π/3-α)

cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)

n倍角公式

sin(nα)=ncos^(n-1)α·sinα-c(n,3)cos^(n-3)α·sin^3α

c(n,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-c(n,2)cos^(n-2)α·sin^2α

c(n,4)cos^(n-4)α·sin^4α-…

半形公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1

cosα)/2)

tan(α/2)=±√((1-cosα)/(1

cosα))=sinα/(1

cosα)=(1-cosα)/sinα

cot(α/2)=±√((1

cosα)/(1-cosα))=(1

cosα)/sinα=sinα/(1-cosα)

sec(α/2)=±√((2secα/(secα

1))csc(α/2)=±√((2secα/(secα-1))

輔助角公式

asinα

bcosα=√(a^2

b^2)sin(α

φ)(tanφ=b/a)

asinα

bcosα=√(a^2

b^2)cos(α-φ)(tanφ=a/b)

萬能公式

sin(a)=

(2tan(a/2))/(1

tan^2(a/2))

cos(a)=

(1-tan^2(a/2))/(1

tan^2(a/2))

tan(a)=

(2tan(a/2))/(1-tan^2(a/2))

降冪公式

sin^2α=(1-cos(2α))/2=versin(2α)/2

cos^2α=(1

cos(2α))/2=covers(2α)/2

tan^2α=(1-cos(2α))/(1

cos(2α))

三角和的三角函式

sin(α

βγ)=sinα·cosβ·cosγ

cosα·sinβ·cosγ

cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α

βγ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α

βγ)=(tanα

tanβ

tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

其它公式

1sin(a)=(sin(a/2)

cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

csc(a)=1/sin(a)

sec(a)=1/cos(a)

cos30=sin60

sin30=cos60

推導公式

tanα

cotα=2/sin2α

tanα-cotα=-2cot2α

1cos2α=2cos^2α

1-cos2α=2sin^2α

1sinα=[sin(α/2)

cos(α/2)]^2

三角函式積分公式大全

3樓:匿名使用者

∫sin x dx = -cos x + c

∫ cos x dx = sin x + c

∫tan x dx = ln |sec x | + c

∫cot x dx = ln |sin x | + c

∫sec x dx = ln |sec x + tan x | + c

∫csc x dx = ln |csc x – cot x | + c

∫sin ²x dx =1/2x -1/4 sin 2x + c

∫ cos ²x dx = 1/2+1/4 sin 2x + c

∫ tan²x dx =tanx -x+ c

∫ cot ²x dx =-cot x-x+ c

∫ sec ²x dx =tanx + c

∫ csc ²x dx =-cot x+ c

∫arcsin x dx = xarcsin x+√(1-x²)+c

∫arccosx dx = xarccos x-√(1-x²)+c

∫arctan x dx = xarctan x-1/2ln(1+x²)+c

∫arc cot x dx =xarccot x+1/2ln(1+x²)+c

∫arcsec xdx =xarcsec x-ln│x+√(x²-1)│+c

∫arccsc x dx =xarccsc x+ln│x+√(x²-1)│+c

三角函式公式表

4樓:向前看

一、倍角公式

1、sin2a=2sina*cosa

2、cos2a=cosa^2-sina^2=1-2sina^2=2cosa^2-1

3、tan2a=(2tana)/(1-tana^2)(注:sina^2 是sina的平方 sin2(a) )

二、推導公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

3、1+cos2α=2cos^2α

4、、4-cos2α=2sin^2α

5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

三、兩角和差

1、1cos(α+β)=cosα·cosβ-sinα·sinβ

2、cos(α-β)=cosα·cosβ+sinα·sinβ

3、sin(α±β)=sinα·cosβ±cosα·sinβ

4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

擴充套件資料:

以下關係,函式名不變,符號看象限.

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

以下關係,奇變偶不變,符號看象限

sin(90°-α)=cosα

cos(90°-α)=sinα

tan(90°-α)=cotα

cot(90°-α)=tanα

sin(90°+α)=cosα

cos(90°+α)=-sinα

tan(90°+α)=-cotα

cot(90°+α)=-tanα

sin(270°-α)=-cosα

cos(270°-α)=-sinα

tan(270°-α)=cotα

cot(270°-α)=tanα

sin(270°+α)=-cosα

cos(270°+α)=sinα

tan(270°+α)=-cotα

cot(270°+α)=-tanα

三角函式的轉換公式,三角函式的轉換公式

同角三角函式的基本關係式 倒數關係 商的關係 平方關係 tan cot 1 sin csc 1 cos sec 1sin cos tan sec csc cos sin cot csc sec sin2 cos2 1 1 tan2 sec2 1 cot2 csc2 誘導公式 sin sin cos ...

反三角函式求導。反三角函式求導公式是什麼?

arcsinx的導數為根號下1 x的平方分之1 反三角函式求導公式是什麼?1 反正bai弦函式的求導 arcsinx 1 1 x 2 2 反餘du弦函式zhi的dao求導專 arccosx 1 1 x 2 3 反正切函屬數的求導 arctanx 1 1 x 2 4 反餘切函式的求導 arccotx ...

數學三角函式常用公式

1 積化和差公式 sin sin cos cos cos cos cos cos sin cos sin sin cos sin sin sin 積化和差公式是由正弦或余弦的和角公式與差角公式通過加減運算推導而得。其中後兩個公式可合併為乙個 sin cos sin sin 2 和差化積公式 sin ...