三角函式最大值和最小值求法,三角函式最大值和最小值求法

2021-03-04 07:09:47 字數 4397 閱讀 2410

1樓:良駒絕影

1、化為乙個三角函式。

如:f(x)=sinx+√3cosx=2sin(x+π/3)最大值是2,最小值是-2

2、利用換元法化為二次函式。

如:f(x)=cosx+cos2x

=cosx+2cos²x-1

=2t²+t-1 【其中t=cosx∈[-1,1]】

則f(x)的最大值是當t=cosx=1時取得的,是2,最小值是當t=cosx=-1/4時取得的,是-9/8

2樓:匿名使用者

一次的,可以化成一般的三角函式sin, cos tan 根據圖象的來找最大值和最小值,(範圍)

二次的可以用換元法,變成二次函式,再用頂點式,在取值範圍內找最大值和最小值,

還有就是換元變成對勾函式的形式

都是要與圖象結合的

3樓:匿名使用者

sinx,cosx最大值最小值都是1,把三角函式化為a·sinx+b或a·cosx+b的形式,最大值就是a+b,最小值-a+b

怎麼求三角函式的最大值和最小值,比如如

4樓:

不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式

你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)

也就是使sinx和sint有相同的形式

t=π/2時 sint 即sin(2x-π/6)有最大值

此時2x-π/6=t=π/2 so x=π/3

求sint的單調區間得出關於t的區間

然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間

sint t=不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式

你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)

也就是使sinx和sint有相同的形式

t=π/2時 sint 即sin(2x-π/6)有最大值

此時2x-π/6=t=π/2 so x=π/3

求sint的單調區間得出關於t的區間

然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間

t=90度 求最大值點阿

三角函式最大值最小值怎麼求

5樓:河傳楊穎

1、化為乙個三角函式

如:f(x)=sinx+√3cosx=2sin(x+π/3)

最大值是2,最小值是-2

2、利用換元法化為二次函式

如:f(x)=cosx+cos2x=cosx+2cos²x-1=2t²+t-1 【其中t=cosx∈[-1,1]】

則f(x)的最大值是當t=cosx=1時取得的,是2,最小值是當t=cosx=-1/4時取得的,是-9/8

尋找函式最大值和最小值

找到全域性最大值和最小值是數學優化的目標。如果函式在閉合間隔上是連續的,則通過最值定理存在全域性最大值和最小值。此外,全域性最大值(或最小值)必須是域內部的區域性最大值(或最小值),或者必須位於域的邊界上。

因此,找到全域性最大值(或最小值)的方法是檢視內部的所有區域性最大值(或最小值),並且還檢視邊界上的點的最大值(或最小值),並且取最大值或最小)乙個。

三角函式的定義域和值域

sin(x),cos(x)的定義域為r,值域為[-1,1]。

tan(x)的定義域為x不等於π/2+kπ(k∈z),值域為r。

cot(x)的定義域為x不等於kπ(k∈z),值域為r。

y=a·sin(x)+b·cos(x)+c 的值域為 [ c-√(a²;+b²;) , c+√(a²;+b²;)]

週期t=2π/ω

6樓:幻精靈家族

不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式

你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)

也就是使sinx和sint有相同的形式

t=π/2時 sint 即sin(2x-π/6)有最大值

此時2x-π/6=t=π/2 so x=π/3

求sint的單調區間得出關於t的區間

然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間

sint t=不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式

你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)

也就是使sinx和sint有相同的形式

t=π/2時 sint 即sin(2x-π/6)有最大值

此時2x-π/6=t=π/2 so x=π/3

求sint的單調區間得出關於t的區間

然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間

t=90度 求最大值點阿

來教教我三角函式的最大值最小值怎麼求 100

7樓:給她乙個背影

不論是sinx還是sin(2x-π

/6) 都是三角函式f(x)=sin(x)的幾種形式你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)也就是使sinx和sint有相同的形式

t=π/2時 sint 即sin(2x-π/6)有最大值此時2x-π/6=t=π/2 so x=π/3求sint的單調區間得出關於t的區間

然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間

sint t=不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式

你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)也就是使sinx和sint有相同的形式

t=π/2時 sint 即sin(2x-π/6)有最大值此時2x-π/6=t=π/2 so x=π/3求sint的單調區間得出關於t的區間

然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間

t=90度 求最大值點阿

如何計算三角函式的最大最小值

8樓:河傳楊穎

1、化為乙個三角函式

如:f(x)=sinx+√3cosx=2sin(x+π/3)

最大值是2,最小值是-2

2、利用換元法化為二次函式

如:f(x)=cosx+cos2x=cosx+2cos²x-1=2t²+t-1 【其中t=cosx∈[-1,1]】

則f(x)的最大值是當t=cosx=1時取得的,是2,最小值是當t=cosx=-1/4時取得的,是-9/8

尋找函式最大值和最小值

找到全域性最大值和最小值是數學優化的目標。如果函式在閉合間隔上是連續的,則通過最值定理存在全域性最大值和最小值。此外,全域性最大值(或最小值)必須是域內部的區域性最大值(或最小值),或者必須位於域的邊界上。

因此,找到全域性最大值(或最小值)的方法是檢視內部的所有區域性最大值(或最小值),並且還檢視邊界上的點的最大值(或最小值),並且取最大值或最小)乙個。

三角函式的定義域和值域

sin(x),cos(x)的定義域為r,值域為[-1,1]。

tan(x)的定義域為x不等於π/2+kπ(k∈z),值域為r。

cot(x)的定義域為x不等於kπ(k∈z),值域為r。

y=a·sin(x)+b·cos(x)+c 的值域為 [ c-√(a²;+b²;) , c+√(a²;+b²;)]

週期t=2π/ω

9樓:幻精靈家族

不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式

你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)

也就是使sinx和sint有相同的形式

t=π/2時 sint 即sin(2x-π/6)有最大值

此時2x-π/6=t=π/2 so x=π/3

求sint的單調區間得出關於t的區間

然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間

sint t=不論是sinx還是sin(2x-π/6) 都是三角函式f(x)=sin(x)的幾種形式

你可以令t=2x-π/6 則sin(2x-π/6)=sin(t)

也就是使sinx和sint有相同的形式

t=π/2時 sint 即sin(2x-π/6)有最大值

此時2x-π/6=t=π/2 so x=π/3

求sint的單調區間得出關於t的區間

然後再根據t=2x-π/6即可算出sin(2x-π/6)關於x的單調區間

t=90度 求最大值點阿

10樓:匿名使用者

利用三角函式公式,將函式式化為asin(bx+d)的形式

這種情況下最大值為a,最小值為-a.

看懂了嗎?cos也是一樣的

求助,關於用導數求三角函式最大值和最小值

切線為y x e 2 y型積分區域0 y 1,ey x e y s e y ey dy e 2 1 3 體積 以y x e為界繞x軸旋轉的圓錐體積 以y lnx為界繞x旋轉的體積,v v1 v2 dv1 x e 2dx 表示微元體積 以x e為半徑,以dx為高的微元圓柱體積 dv2 lnx 2dx,...

求三角函式最值,求詳細步驟,數學三角函式最值怎麼求的求詳細

配方很容易的 y cosx 3 2 2 1 4 就是求二次函式y t 3 2 2 1 4 在區間 1,1 上的最值了 第二個先把y變形一下 y 1 sin 2x sinx sinx 1 2 2 5 4那麼當 x pai 4 sinx的取值是 根號2 2,根號2 2 那麼就是求y t 1 2 2 5 ...

求三角函式最值怎麼求的,求三角函式最值怎麼求的

奇變偶不變,符號看象限 答案是 1.2 2.3 3 2 你應該知道三角函式都是週期函式,就是說tan a k tan a cos a 2k cos a sin a 2k sin a 而弧度 中屬的2 就是角度制中的360 cos 70 3 cos 72 3 2 3 cos 24 2 3 cos 2 ...