計算二重積分xdxdy其中Dx,yx2y

2021-03-04 05:04:30 字數 2466 閱讀 9906

1樓:匿名使用者

解:原式=∫<-π/2,π/2>dθ∫<0,cosθ>√(rcosθ)*rdr (作極座標變換)

=∫<-π/2,π/2>√cosθdθ∫

<0,cosθ>r^(3/2)dr

=(2/5)∫<-π/2,π/2>√cosθ*(cosθ)^(5/2)dθ

=(2/5)∫<-π/2,π/2>(cosθ)^3dθ

=(2/5)∫<-π/2,π/2>(1-(sinθ)^2)cosθdθ

=(2/5)∫<-π/2,π/2>(1-(sinθ)^2)d(sinθ)

=(2/5)(2-2/3)

=8/15。

計算二重積分 ∫∫(√x^2+y^2)dxdy,其中d={(x,y)|0<=x^2+y^2<=π^2}

2樓:風灬漠

利用極座標變換吧,積分區域恰為以原點為圓心,以π為半徑的圓x=rcosθ,y=rsinθ,則dxdy=rdrdθ所以∫∫d(√x^2+y^2)dxdy

=∫[0,2π]dθ∫[0,π]r^2dr=π^3/3*∫[0,2π]dθ

=2π^4/3

計算二重積分i=∫∫(x^2+y^2+3y)dxdy,其中d=((x,y)|x^2+y^20)

3樓:匿名使用者

假設a>0,

利用極座標公式

令x=rcost

y=rsint

則d=dxdy=rdrdt

於是原式=∫∫d (r²+3rsint)rdrdt=∫【-π/2,π/2】dt ∫【0,a】(r³+3r²sint)dr

=∫【-π/2,π/2】(0.25a^4+a³ sint) dt=0.25πa^4

不明白可以追問,如果有幫助,請選為滿意回答!

4樓:匿名使用者

解:用代換法

令x=rcosα,y=rsinα,其中r∈[0,a),α∈[0,2π),且|j|=r。

原積分i=∫[0,2π]∫[0,a](r^2+3rsinα)rdrdα

=∫[0,2π](a^4/4-a^3*sinα)dα=πa^4/2

二重積分 ∫∫|3x+4y|dxdy 其中d:x^2+y^2≤1 20

5樓:粒下

因為二重積分的積分區域為d:x^2+y^2≤1,是乙個直徑為1的圓的積分區域。

所以可以令乙個積分區域為d1={(x,y)|x^2+y^2≤1,x>0,y>0},在積分區域d1中,x>0,y>0

所以二重積分 ∫∫|3x+4y|dxdy =4∫∫(3x+4y)dxdy,積分區域為d1={(x,y)|x^2+y^2≤1,x>0,y>0};

即∫∫|3x+4y|dxdy =12∫∫xdxdy+16∫∫ydxdy

其中∫∫xdxdy=∫xdx∫dy,此時的積分區域為0化簡得∫∫xdxdy=∫xdx∫dy=∫x√(1-x^2)dx=(-1/2)∫√(1-x^2)d(1-x^2),此時積分區域為0計算得到∫∫xdxdy=1/3 。

因為∫∫xdxdy與∫∫ydxdy關於y=x曲線對稱,同時積分區域都在第一象限,即∫∫xdxdy=∫∫ydxdy;

即∫∫ydxdy=1/3。

所以二重積分 ∫∫|3x+4y|dxdy =12*(1/3)+16*(1/3)=28/3 。

6樓:匿名使用者

您好,答案如圖所示:

很高興能回答您的提問,您不用新增任何財富,只要及時採納就是對我們最好的回報

。若提問人還有任何不懂的地方可隨時追問,我會盡量解答,祝您學業進步,謝謝。

☆⌒_⌒☆ 如果問題解決後,請點選下面的「選為滿意答案」

計算二重積分∫∫d(x+y)dxdy,其中d={(x,y)|x2+y2≤x+y+1}

7樓:仙劍李逍遙

做變數代換

x=x?12,

y=y?12,

則d==,

所以:i=?

d(x+y)dxdy=?

d(x+y+1)dxdy=?

dxdxdy+?

dydxdy+?

ddxdy.

因為d在(x,y)座標系下是乙個圓,且x,y分別是關於x,y的奇函式,

所以有:?

dxdxdy=0,?

dydxdy=0,

又:易知 ?

ddxdy=sd=32π,

所以:i=32π.

計算二重積分∫∫sin根號下x^2+y^2dxdy,d={(x,y)|π^2<=x^2+y^2<=4π^2}

8樓:匿名使用者

解:原式=∫<0,2π>dθ∫<π,2π>sinr*rdr (作極座標變換)

=2π∫<π,2π>sinr*rdr

=2π(-3π) (應用分部積分法計算)=-6π^2。

二重積分計算,二重積分怎麼計算?

拿到二bai重積分的題 目,分du以下幾步解題 第一步,畫zhi出積分區域dao,此題中是乙個圓的內內部。容 第二步,選取方法,可以直接化成累次積分,也可以進行換元,極座標代換,此題中利用極座標代換。第三步,求出累次積分,需要注意的是雅克比行列式不能漏了。第四步,得出結論。因為二重積分定義的幾何意義...

計算二重積分Dxsinyydxdy,其中D是由曲線

解 先求曲線交點以確定積分區域的範圍 聯立y x與y x 2,解得交點為 0,0 與 1,1 再觀察被積函式的形式確定二重積分分解的順序,因為siny y的原函式不是初等函式,因此不能先對y積分,考慮先對x積分 在 0,0 與 1,1 之間,沿x軸先出現y x,再出現y x 2,且y 0故有 原式 ...

二重積分面積計算問題,二重積分面積計算問題

解 分享一種解法。設x cos y sin 4 3 4,0 2sin 原式 4,3 4 sin d 0,2sin d 2 4,3 4 sin d 2 4,3 4 1 cos d cos 5 2 3。供參考。為什麼二重積分可以算面積 為什麼二重積分算面積是因為 二重積分的幾何意義是當z值為正時的曲頂柱...