計算二重積分Dxsinyydxdy,其中D是由曲線

2021-03-04 05:04:30 字數 3134 閱讀 8402

1樓:匿名使用者

解:先求曲線交點以確定積分區域的範圍:聯立y=x與y=x^2,解得交點為(0,0)與(1,1)

再觀察被積函式的形式確定二重積分分解的順序,因為siny/y的原函式不是初等函式,因此不能先對y積分,考慮先對x積分

在(0,0)與(1,1)之間,沿x軸先出現y=x,再出現y=x^2,且y>=0故有:

原式=∫(0→1)sin(y)/ydy∫(y→sqrt(y))xdx=∫(0→1)(1/2)*(y-y^2) *sin(y)/ydy

=(1/2)∫(0→1)(sin(y)-ysin(y))dy

=-(1/2)*cos(1)+(1/2)+(1/2)*cos(1)-(1/2)*sin(1)

=(1/2)-(1/2)*sin(1)

計算二重積分∫∫(x+y)dxdy,其中d是由直線y=x,x=1所圍成的閉區間

2樓:醉夢微涼

答案為1/2。

具體解題方法如圖:

3樓:pasirris白沙

1、本題的積分區域不全,如果不是x軸,請說明;

2、具體解答如下,如有疑問,歡迎追問,有問必答;

3、若點選放大,**更加清晰;

4、靜心期待著樓主的補充與追問,以便進一步給予詳細的解答。

計算二重積分、∫∫[d](x/y^2)dxdy,其中d是曲線y=x,xy=1及x=2圍成

4樓:匿名使用者

解:原式=∫

<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx

=∫<1,2>(x²-1)dx

=2³/3-2-1/3+1

=4/3。

計算二重積分、∫∫[d](x/y^2)dxdy,其中d是曲線y=x,xy=1及x=2圍成

5樓:匿名使用者

解:畫出積分區域d如右圖,d可用不等式表示為:

(1/y)<=x<=y,1<=y<=2.

這是y-型區域,因此,有

標準答案,希望採納!!!

6樓:匿名使用者

1.,d由x=0,y=0與x^2+y^2=1,畫圖就看出來了

2.y=x與拋物線y=x^2 交點的時候兩個y相等,可以求出x(0,1)

3.2x-y+3=0,x+y-3=0 交點x相等,解出來y=3 所以 1《y《3

7樓:sylviac妹妹

解:1。原式=∫

<1,2>y²dy∫dx/x² (畫圖分析,約去)=∫<1,2>y²(y-1/y)dy

=∫<1,2>(y³-y)dy

=2^4/4-2²/2-1/4+1/2

=9/4;

2。原式=∫<1,2>x²dx∫<1,x>ydy=∫<1,2>x²(x²/2-1/2)dx=1/2∫<1,2>(x^4-x²)dx

=(32/5-8/3-1/5+1/3)/2=58/15;

3。原式=∫<-1,0>dx∫<-x-1,1+x>(x²+y²)dy+∫<0,1>dx∫(x²+y²)dy

=2/3∫<-1,0>(4x³+6x²+3x+1)dx+2/3∫<0,1>(1-3x+6x²-4x³)dx

=2(1+2+3/2+1+1-3/2+2-1)/3=4。

8樓:匿名使用者

^^)|∫∫(e^(y/x)dxdy

=∫[0,1/2] dx∫[x^2,x] (e^(y/x)dy=∫[0,1/2] dx

=∫[0,1/2] (xe-xe^x) dx=ex^2/2|[0,1/2] -∫[0,1/2] xe^xdx=e/8 -∫[0,1/2] xde^x

=e/8 - xe^x|[0,1/2]+∫[0,1/2] e^xdx=e/8-√e/2 +[√e -1]

=e/8 +√e/2 -1

9樓:又唱又跳

|極座標系 d:0≤θ≤π/2 , 0 ≤p≤2∫∫√(1+x²+y²)dxdy = ∫[0,π/2] dθ ∫[0,2] √(1+p²) p dp

= π/2 * (1/3) (1+p²)^(3/2) |[0,2]= (π/6) * (5√5 -1)

10樓:匿名使用者

解:原式=∫

<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx

=∫<1,2>(x²-1)dx

=2³/3-2-1/3+1

=4/3。

計算二重積分∫∫(x/y)dxdy,其中d是由y=x,y=2x,x=1,x=2所圍成的區域

11樓:drar_迪麗熱巴

∫∫(x/y)dxdy

=∫[1,2]∫[x,2x] (x/y)dydx=∫[1,2] xlny[x,2x] dx=∫[1,2] xln2 dx

=ln2/2*x^2[1,2]

=3ln2/2

在空間直角座標系中,二重積分是各部分區域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。

在極座標系下計算二重積分,需將被積函式f(x,y),積分區域d以及面積元素dσ都用極座標表示。函式f(x,y)的極座標形式為f(rcosθ,rsinθ)。為得到極座標下的面積元素dσ的轉換,用座標曲線網去分割d,即用以r=a,即o為圓心r為半徑的圓和以θ=b,o為起點的射線去無窮分割d,設δσ就是r到r+dr和從θ到θ+dθ的小區域。

12樓:匿名使用者

x從1到2,y從x到2x。。。 就是x從1到2,被奇函式是 xln2 結果是 3/2*ln2

13樓:無奈

答案為: 1.5(ln2)

計算二重積分∫∫(x/y)dxdy,其中d是由y=2x,y=x,x=4,x=2所圍成的區域

14樓:

因為 d為y=2x,y=x,x=2,x=4所圍成的區域∫∫x/ydxdy =∫dx∫(x/y)dy= ∫dx[xlny]

= ∫x*ln2 dx

= 8*ln2

二重積分計算,二重積分怎麼計算?

拿到二bai重積分的題 目,分du以下幾步解題 第一步,畫zhi出積分區域dao,此題中是乙個圓的內內部。容 第二步,選取方法,可以直接化成累次積分,也可以進行換元,極座標代換,此題中利用極座標代換。第三步,求出累次積分,需要注意的是雅克比行列式不能漏了。第四步,得出結論。因為二重積分定義的幾何意義...

二重積分面積計算問題,二重積分面積計算問題

解 分享一種解法。設x cos y sin 4 3 4,0 2sin 原式 4,3 4 sin d 0,2sin d 2 4,3 4 sin d 2 4,3 4 1 cos d cos 5 2 3。供參考。為什麼二重積分可以算面積 為什麼二重積分算面積是因為 二重積分的幾何意義是當z值為正時的曲頂柱...

高數,二重積分,高數中二重積分

這是我的理解 二重積分和二次積分的區別 二重積分是有關面積的積分,二次積分是兩次單變數積分。當f x,y 在有界閉區域內連續,那麼二重積分和二次積分相等。對開區域或無界區域這關係不衡成立。可二次積分不一定能二重積分。如對 0,1 0,1 區域,對任意x 0,1 可定義一個對y連續的函式g x,y y...