向量的叉乘和點乘有什麼不同?運用在什麼上面

2021-03-04 04:53:33 字數 5501 閱讀 3236

1樓:匿名使用者

axb=c表示:向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。結果為向量。

物理學中,已知力與力臂求力矩,用叉乘。

向量a·向量b=|a||b|cos,結果為數。在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

2樓:晶智曉曦

第一種:實數乘向量

得到的結果是向量,點乘得到的是實數,向量a點乘向量b=向量a的模乘向量b的模再乘向量a與向量b的夾角

第二種:叉乘是向量的外積,點乘是內積,具體的看這個,很全面

向量的點乘和叉乘的區別.詳細點.高手進 20

3樓:匿名使用者

1、表示意義不

同:點乘是向量的內積。

叉乘是向量的外積。

2、結果單位不同:

點乘,結果是乙個向量在另乙個向量方向上投影的長度,是乙個標量。

叉乘,也叫向量積。結果是乙個和已有兩個向量都垂直的向量。

3、計算方法不同:

點乘,公式:a * b = |a| * |b| * cosθ

叉乘,公式:a ∧ b = |a| * |b| * sinθ

點乘又叫向量的內積、數量積,是乙個向量和它在另乙個向量上的投影的長度的乘積。

該定義只對二維和三維空間有效。

這個運算可以簡單地理解為:

在點積運算中,第乙個向量投影到第二個向量上(這裡,向量的順序是不重要的,點積運算是可交換的),然後通過除以它們的標量長度來「標準化」。

這樣,這個分數一定是小於等於1的,可以簡單地轉化成乙個角度值。

叉乘的幾何意義及其運用

叉積的長度|a×b|可以解釋成這兩個叉乘向量a,b共起點時,所構成平行四邊形的面積。

據此有:混合積[abc]=(a×b)·c可以得到以a,b,c為稜的平行六面體的體積。

4樓:冰雨人生

用"*"表示點乘符號,(a,b)表示向量a與向量b的夾角向量的點乘積是乙個數

a*b=|a|×|b|×coc(a,b)

向量的叉乘積是乙個向量,它的模是

|a×b|=|a|×|b|×sin(a,b)它的方向按右手定則判定:彎曲右手手掌(稱讚別人時所做的動作),拇指向外,另外四指彎曲的方向與從a到b的轉角方向相同,拇指所指的方向即是a×b的方向.

5樓:匿名使用者

向量的點積:

假設向量u(ux, uy)和v(vx, vy),u和v之間的夾角為α,從三角形的邊角關係等式出發,可作出如下簡單推導:

|u - v||u - v| = |u||u| + |v||v| - 2|u||v|cosα

===>

(ux - vx)2 + (uy - vy)2 = ux2 + uy2 +vx2+vy2- 2|u||v|cosα

===>

-2uxvx - 2uyvy = -2|u||v|cosα

===>

cosα = (uxvx + uyvy) / (|u||v|)

這樣,就可以根據向量u和v的座標值計算出它們之間的夾角。

定義u和v的點積運算: u . v = (uxvx + uyvy),

上面的cosα可簡寫成: cosα = u . v / (|u||v|)

當u . v = 0時(即uxvx + uyvy = 0),向量u和v垂直;當u . v > 0時,u和v之間的夾角為銳角;當u . v < 0時,u和v之間的夾角為鈍角。

可以將運算從2維推廣到3維。

向量的叉積:

假設存在向量u(ux, uy, uz), v(vx, vy, vz), 求同時垂直於向量u, v的向量w(wx, wy, wz).

因為w與u垂直,同時w與v垂直,所以w . u = 0, w . v = 0; 即

uxwx + uywy + uzwz = 0;

vxwx + vywy + vzwz = 0;

分別削去方程組的wy和wx變數的係數,得到如下兩個等價方程式:

(uxvy - uyvx)wx = (uyvz - uzvy)wz

(uxvy - uyvx)wy = (uzvx - uxvz)wz

於是向量w的一般解形式為:

w = (wx, wy, wz) = ((uyvz - uzvy)wz / (uxvy - uyvx), (uzvx - uxvz)wz / (uxvy - uyvx), wz)

= (wz / (uxvy - uyvx) * (uyvz - uzvy, uzvx - uxvz, uxvy - uyvx))

因為:ux(uyvz - uzvy) + uy(uzvx - uxvz) + uz(uxvy - uyvx)

= uxuyvz - uxuzvy + uyuzvx - uyuxvz + uzuxvy - uzuyvx

= (uxuyvz - uyuxvz) + (uyuzvx - uzuyvx) + (uzuxvy - uxuzvy)

= 0 + 0 + 0 = 0

vx(uyvz - uzvy) + vy(uzvx - uxvz) + vz(uxvy - uyvx)

= vxuyvz - vxuzvy + vyuzvx - vyuxvz + vzuxvy - vzuyvx

= (vxuyvz - vzuyvx) + (vyuzvx - vxuzvy) + (vzuxvy - vyuxvz)

= 0 + 0 + 0 = 0

由此可知,向量(uyvz - uzvy, uzvx - uxvz, uxvy - uyvx)是同時垂直於向量u和v的。

為此,定義向量u = (ux, uy, uz)和向量 v = (vx, vy, vz)的叉積運算為:u x v = (uyvz - uzvy, uzvx - uxvz, uxvy - uyvx)

上面計算的結果可簡單概括為:向量u x v垂直於向量u和v。

根據叉積的定義,沿x座標軸的向量i = (1, 0, 0)和沿y座標軸的向量j = (0, 1, 0)的叉積為:

i x j = (1, 0, 0) x (0, 1, 0) = (0 * 0 - 0 * 1, 0 * 0 - 1 * 0, 1 * 1 - 0 * 0) = (0, 0, 1) = k

同理可計算j x k:

j x k = (0, 1, 0) x (0, 0, 1) = (1 * 1 - 0 * 0, 0 * 0 - 0 * 1, 0 * 0 - 0 * 0) = (1, 0, 0) = i

以及k x i:

k x i = (0, 0, 1) x (1, 0, 0) = (0 * 0 - 1 * 0, 1 * 1 - 0 * 0, 0 * 0 - 0 * 0) = (0, 1, 0) = j

由叉積的定義,可知:

v x u = (vyuz - vzuy, vzux - vxuz, vxuy - vyux) = - (u x v)

6樓:東方無雙

|×|×向量的點乘積是乙個數

a*b=|a|×|b|×coc(a,b)

向量的叉乘積是乙個向量,它的模是

|a×b|=|a|×|b|×sin(a,b)它的方向按右手定則判定:彎曲右手手掌(稱讚別人時所做的動作),拇指向外,另外四指彎曲的方向與從a到b的轉角方向相同,拇指所指的方向即是a×b的方向.

向量的點乘和叉乘有什麼區別

7樓:匿名使用者

向量點乘是各向量的模相乘,不管方向;向量叉乘是各向量相乘,方向也要乘。

向量之間的點乘和叉乘有什麼區別

8樓:匿名使用者

兩個不同的向量乘法。

9樓:一山難容二虎嘎

點乘:a.b=|a|*|b|cosθ

叉乘:axb=|a|*|b|sinθ

(a、b均為向量 θ為a、b向量的夾角)

10樓:喜楚慕胭

有,點乘的結果是一代數,而叉乘的結果是一向量.

點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是乙個數。

向量a·向量b=|a||b|cos

在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。

叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是乙個向量,記這個向量為c。

|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外積不遵守乘法交換率,因為

向量a×向量b=-向量b×向量a

在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。

將向量用座標表示(三維向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i

jk||a1b1

c1||a2

b2c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。

點乘和叉乘的區別是什麼?

11樓:匿名使用者

點乘是向量的內積 叉乘是向量的外積

點乘,也叫數量積。結果是乙個向量在另乙個向量方向上投影的長度,是乙個標量。

叉乘,也叫向量積。結果是乙個和已有兩個向量都垂直的向量。

12樓:0914菜菜

|區別:

點乘是向量的內積 叉乘是向量的外積。

點乘:點乘的結果是乙個實數 a·b=|a|·|b|·cos叉乘:叉乘的結果是乙個向量

13樓:匿名使用者

點乘也叫數量積,是向量的內積,結果是乙個向量在另乙個向量方向上投影的長度,是乙個標量。叉乘也叫向量積,是向量的外積,結果是乙個和已有兩個向量都垂直的向量。

向量中的點乘和叉乘有什麼區別

14樓:匿名使用者

點乘是內積,考慮向量夾角;叉乘是外積,不考慮向量夾角

15樓:西域牛仔王

點乘的結果是數,叉乘的結果仍是向量

向量的點乘和叉乘的區別和應用有何區別

16樓:李志豪

點乘是數量積,結果是個數,叉乘是向量積,結果是個向量,這就是本質的區別。

向量點乘和叉乘的幾何意義是什麼?謝謝。

17樓:楊大同學

點乘具體如:做功,力與方向的乘積。等

叉乘的結果還是乙個向量,垂直原來兩個所在的平面,方向也有原來兩個向量決定。

簡單說,點乘的結果是個數

叉乘的結果還是個向量

向量的點乘叉乘有什麼意義向量的點乘和叉乘有什麼用途?

點乘的公式是a向量 b向量和其夾角的余弦的積,是用來解決平面上的問題的。而叉乘則是與夾角的正弦的積,是用來解決空間上的問題的。點乘表示兩個向量圍城的平行四邊形的面積 點乘表示模的乘積乘以夾角的cos值 叉乘表示模的乘積乘以夾角的sin值。向量叉乘的定義 僅限於空間向量 當向量a b平行或至少有乙個零...

向量點乘和叉乘先進行哪個,向量的點乘和叉乘的區別,舉個例子,謝謝

點乘後得到數值,不能再進行叉乘,如果你要做復合計算,肯定先叉乘 向量點乘和叉乘先進行哪個?點乘後得到數值,不能再進行叉乘,如果你要做復合計算,肯定先叉乘 一般來說,點乘過後,結果是數,數是沒有 叉乘 的概念的,所以只能先叉乘再點乘。但是運算本身並沒有規定順序,最好通過加括號避免混淆 向量的點乘和叉乘...

向量a點乘向量b向量b點乘向量c,為什麼不能推出向量a

我覺得向量a 點乘向量b和向量b點乘向量c是2個數量積。也就是 a 乘以 b 乘以他們夾角的余弦,數量積只是乙個數量,可以相等,但向量a和向量c 有大小,還有方向,不一定相等 判斷若向量a點乘向量b等於向量a點乘向量c則向量b等於向量c 這句話是錯誤的 1 向量a可能是零向量 2 可能向量b的模乘以...