矩陣A1B1為n階可逆矩陣

2021-03-04 04:48:51 字數 1097 閱讀 4263

1樓:叫彩瞬溝

(1)證明:若 a 可逆,根據「a的逆矩陣」與「a的伴隨矩陣」關係式a^-1=a*/│a│,

得伴隨矩陣為 a* =│a│a^-1-------------------(a)

於是 (a*)^-1 =(│a│a^-1)^-1=a/│a│---------------------(b)

類似的,套用伴隨矩陣的公式(a),可得a^-1 的伴隨矩陣是

(a^-1)* =│a^-1│(a^-1)^-1=(1/│a│)·a=a/│a│-----------(c)

由(b)(c)兩式可知 (a*)^-1=(a^-1)*

(2)證明:因為aa*=|a|e,兩邊取行列式得|a||a*|=||a|e|,而||a|e|=|a|^n,所以|a*|=|a|^(n-1)-----------------------(d)

a可逆,則由(a)得,(a*)*=|a*|(a*)^-1,由(b)(d)得,(a*)*=|a|^(n-1)·(a/|a|)=|a|^(n-2)·a

設a為n階可逆矩陣,證明(a*)^(-1)=[a^(-1)]* 設a為n階可逆矩陣,證明(a*)*

2樓:匿名使用者

(1)證明:若 a 可逆,根據「a的逆矩陣」與「a的伴隨矩陣」關係式a^-1=a*/│a│,

得伴隨矩陣為 a* =│a│a^-1-------------------(a)

於是 (a*)^-1 =(│a│a^-1)^-1=a/│a│---------------------(b)

類似的,套用伴隨矩陣的公式(a),可得a^-1 的伴隨矩陣是

(a^-1)* =│a^-1│(a^-1)^-1=(1/│a│)·a=a/│a│-----------(c)

由(b)(c)兩式可知 (a*)^-1=(a^-1)*

(2)證明:因為aa*=|a|e,兩邊取行列式得|a||a*|=||a|e|,而||a|e|=|a|^n,所以|a*|=|a|^(n-1)-----------------------(d)

a可逆,則由(a)得,(a*)*=|a*|(a*)^-1,由(b)(d)得,(a*)*=|a|^(n-1)·(a/|a|)=|a|^(n-2)·a

設a,b,ab,均為n階可逆矩陣,證明a1b1為

容易驗證 抄 a 1 a b b 1 b 1 a 1.由襲於可bai逆du陣zhi的逆陣 可逆,可逆陣的乘積可逆,由上式知dao a 1 b 1可逆.再由性質 ab 1 b 1 a 1 由 式,兩端取逆,得 a 1 b 1 1 b 1 1 a b 1 a 1 1 b a b 1 a 設a,b,a b...

a,b,ab,a1b1均為n階可逆矩陣,則a

因為 a 1 b 1 a 1 a b b 1 所以 a 1 b 1 可逆 且 a 1 b 1 1 a 1 a b b 1 1 b a b 1a.設a,b,a b,a 1 b 1均為n階可逆矩陣,則 a 1 b 1 1等於 a a 1 b 1b a bc a a b 1bd 1 對於選項 a a 1 ...

矩陣問題設n階矩陣A的伴隨矩陣為A證明1若

1 a 0 則秩 n 1 若秩元素都為0 若秩 n 1,則a 不等於0矩陣,且由aa a e 0知,a 的列向量為ax 0的解,從回而秩a 1 綜上答可知秩a 1,顯然 a 0 2 若 a 0結論顯然成立 若 a 不等於0,則由 aa a e兩邊取行列式,可得結論。1 是 2 的特殊情況 證明請看 ...