1 x 2怎麼展開為冪級數的,圖中1 1 x 2怎麼為冪級數的?

2021-08-10 23:12:37 字數 1809 閱讀 8618

1樓:

f(x)=x/(1+^2) f(x)/x=1/(1+x^2)

同取積分:

∫(0,x) f(t)/t dt =∫(0,x) 1/(1+t^2) dt =arctanx =∑(n=0,∞) (-1)^n * 1/(2n+1) * x^(2n+1)

然後,同對x求導

f(x)/x=[∑(n=0,∞) (-1)^n * 1/(2n+1) * x^(2n+1)]' =∑(n=0,∞) [(-1)^n * 1/(2n+1) * x^(2n+1)]' =∑(n=0,∞) (-1)^n * x^(2n)

因此, f(x)=∑(n=0,∞) (-1)^n * x^(2n+1),x∈(-1,1)

x/(1+x^2)=x/(1-(-x^2)) =lim(n→∞) x(1-0)/(1-(-x^2)) =lim(n→∞) x(1-(-x^2)^n)/(1-(-x^2))

這正是首項為x,公比為-x^2的等比級數的收斂函。

因此,直接可推:f(x)=x-x^3+x^5-……=∑(n=0,∞) (-1)^n * x^(2n+1),x∈(-1,1)

擴充套件資料

冪級數,是數學分析當中重要概念之一,是指在級數的每一項均為與級數項序號n相對應的以常數倍的(x-a)的n次方(n是從0開始計數的整數,a為常數)。

冪級數是數學分析中的重要概念,被作為基礎內容應用到了實變函式、複變函式等眾多領域當中。

2樓:

1/(1-x)²=【1/(1-x)】’

=(∞∑n²·xⁿ)'

=∞∑n1·nx^n-1

其他類似題型參考

1、求x/(1-x^2)為x的冪級數

f(x)=x/(1-x^2)

=x/(1-x)(1+x)

=(1/2)*[1/(1-x) - 1/(1+x)]

因為1/(1-x)=∑(n=0,∞) x^n,x∈(-1,1)

1/(1+x)=∑(n=0,∞) (-x)^n,x∈(-1,1)

所以f(x)=(1/2)*∑(n=0,∞) [1-(-1)^n] x^n,x∈(-1,1)

寫得再清楚一點,就是:

f(x)=x+x^3+x^5+……=∑(n=0,∞) x^(2n+1),x∈(-1,1)

其實,如果細心一點觀察,就可以發現:

x/(1-x^2)=lim(n→∞) x(1-0)/(1-x^2)

=lim(n→∞) x(1-(x^2)^n)/(1-x^2)

這正是首項為x,公比為x^2的等比級數的收斂函式~~~

因此,直接可推:f(x)=x+x^3+x^5+……=∑(n=0,∞) x^(2n+1),x∈(-1,1)

2、求x/(1+x^2)為x的冪級數

f(x)=x/(1+^2)

f(x)/x=1/(1+x^2)

同取積分:

∫(0,x) f(t)/t dt =∫(0,x) 1/(1+t^2) dt

=arctanx

=∑(n=0,∞) (-1)^n * 1/(2n+1) * x^(2n+1)

然後,同對x求導

f(x)/x=[∑(n=0,∞) (-1)^n * 1/(2n+1) * x^(2n+1)]'

=∑(n=0,∞) [(-1)^n * 1/(2n+1) * x^(2n+1)]'

=∑(n=0,∞) (-1)^n * x^(2n)

因此,f(x)=∑(n=0,∞) (-1)^n * x^(2n+1),x∈(-1,1)

3樓:茹翊神諭者

利用1/1-x的冪級數

詳情如圖所示

有任何疑惑,歡迎追問

將sin2x展開成x的冪級數,怎麼展開

sinx x x 3 3 x 5 5 sin2x 2x 8x 3 3 32x 5 5 泰勒公式 f x f a f a x a 1 f a x a 2 f n a x a n n rn x f x sin2x,a 2 f x 2cos2x 2 1sin 2x 1 2 f x 4sin2x 2 2si...

將x41x2展開成x的冪級數

x 4 1 x x 4 1 x x x 4 x 5 x 6 x n 4 n 0 冪級數是函式項級數中最基本的一類,它的特點是在其收斂區間絕對收斂,且冪級數在收斂區間內可逐項微分和積分,由此第一次得到了一種函式的無限形式的表示式 即冪級數式 擴充套件資料 函式成冪級數的一般方法是 1 直接 對函式求各...

1 z 2 展開成的冪級數,並指出它們的收斂半徑

因為1 1 z 1 2z 1 1 z 1 1 z 1 z z z z n 當z 1時收斂,即 1 1 1 z 2z 4z 6z 5 1 n 2n z 2n 1 n 1,2,3 1 2z 1 1 z 1 2z 3z 4 1 n 1 n z 2n 2 n 1,2,3 即冪級數的是 1 2z 3z 4 1...