PV nRT這個公式是怎麼推導出來的

2021-08-08 03:12:35 字數 4769 閱讀 3765

1樓:縱橫豎屏

推導過程這三個公式分別為其省略餘項的麥克勞林公式,其中麥克勞林公式為泰勒公式的一種特殊形式

這個恆等式也叫做尤拉公式,它是數學裡最令人著迷的乙個公式,它將數學裡最重要的幾個數字聯絡到了一起:兩個超越數:自然對數的底e,圓周率π;兩個單位:虛數單位i和自然數的單位1;

以及被稱為人類偉大發現之一的0。數學家們評價它是「上帝創造的公式」。

2樓:匿名使用者

e^ix=cosx+isinx,e是自然對數的底,i是虛數單位。它將三角函式的定義域擴大到複數,建立了三角函式和指數函式的關係,它在復變函式論裡佔有非常重要的地位。 e^ix=cosx+isinx的證明:

因為e^x=1+x/1!+x^2/2!+x^3/3!

+x^4/4!+…… cos x=1-x^2/2!+x^4/4!

-x^6/6!…… sin x=x-x^3/3!+x^5/5!

-x^7/7!…… 在e^x的式中把x換成±ix. (±i)^2=-1, (±i)^3=

3樓:抗豐席韋

尤拉公式有4條

(1)分式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

當r=0,1時式子的值為0

當r=2時值為1

當r=3時值為a+b+c

(2)複數

由e^iθ=cosθ+isinθ,得到:

sinθ=(e^iθ-e^-iθ)/2i

cosθ=(e^iθ+e^-iθ)/2

(3)三角形

設r為三角形外接圓半徑,r為內切圓半徑,d為外心到內心的距離,則:

d^2=r^2-2rr

(4)多面體

設v為頂點數,e為稜數,是面數,則

v-e+f=2-2p

p為尤拉示性數,例如

p=0的多面體叫第零類多面體

p=1的多面體叫第一類多面體

等等其實尤拉公式是有4個的,上面說的都是多面體的公式

4樓:林清他爹

尤拉公式不是推導出來的,尤拉公式就是乙個定義式!如下:

在復變函式中,設z是乙個作為宗量(也就是自變數)的複數,則z=x+iy。則定義w=f(z)=e^z=e^(x+iy)=(e^x)(e^iy)=(e^x)(cosy+isiny)。請注意上式的幾個等號的含義:

第二個等號定義了有e^z這種形式的復變函式(具體是什麼對應法則不清楚,只是告訴你有這麼樣的乙個函式);第三個等號不是新的定義,是等價替換;第四個等號是乙個新的定義,定義了這個函式滿足乙個新的運算法則(指數之和可以拆分成兩項之積,類似於實數);第五個等號定義了尤拉公式,告訴你e^iy具體的對應法則!(這裡可能有點不好理解,因為e^z是乙個復變函式,那麼e^z肯定是乙個複數,那麼它肯定也能用x+iy這樣的形式表達出來,第五個等號就是給出了函式的對應法則!)

所以嚴格來說尤拉公式不是推導出來的,只是乙個定義式!只不過當時沒有直接定義,而是根據模擬實數得出來的,然後才有了嚴格的定義。網上有好多人問尤拉公式怎麼證明,其實這顯示出了他們邏輯的混亂,沒有正確區分模擬演義,定義,定理,證明四者的關係。

剛開始並沒有尤拉公式這個嚴格的定義,最初的尤拉公式是人們通過模擬實數得出的演繹結果罷了,然後才有了尤拉公式嚴格的定義。

5樓:

復變函式論裡的尤拉公式

e^ix=cosx+isinx,e是自然對數的底,i是虛數單位。它將三角函式的定義域擴大到複數,建立了三角函式和指數函式的關係,它在復變函式論裡佔有非常重要的地位。 e^ix=cosx+isinx的證明:

因為e^x=1+x/1!+x^2/2!+x^3/3!

+x^4/4!+…… cos x=1-x^2/2!+x^4/4!

-x^6/6!…… sin x=x-x^3/3!+x^5/5!

-x^7/7!…… 在e^x的式中把x換成±ix. (±i)^2=-1, (±i)^3=∓i, (±i)^4=1 …… e^±ix=1±ix/1!

-x^2/2!∓x^3/3!+x^4/4!

…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 將公式裡的x換成-x,得到:

e^-ix=cosx-isinx,然後採用兩式相加減的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.這兩個也叫做尤拉公式。將e^ix=cosx+isinx中的x取作π就得到:

e^iπ+1=0.這個恆等式也叫做尤拉公式,它是數學裡最令人著迷的乙個公式,它將數學裡最重要的幾個數字聯絡到了一起:兩個超越數:

自然對數的底e,圓周率

π,兩個單位:虛數單位i和自然數的單位1,以及被稱為人類偉大發現之一的0。數學家們評價它是「上帝創造的公式」,我們只能看它而不能理解它。

6樓:匿名使用者

|令z=cosx+isinx

則dz/dx=-sinx+icosx=i²sinx+icosx=zidz/z=idx

ln|z|=ix+c

由於x=0時,z=1,則c=0

所以ln|z|=ix

z=e^(ix)=cosx+isinx

7樓:狂曠念鴻禧

用拓樸學方法證明尤拉公式

嘗尤拉公式:對於任意多面體(即各面都是平面多邊形並且沒有洞的立體),假

設f,e和v分別表示面,稜(或邊),角(或頂)的個數,那麼

f-e+v=2。試一下用拓樸學方法證明關於多面體的面、稜、頂點數的尤拉公式。

證明如圖15(圖是立方體,但證明是一般的,是「拓樸」的):

(1)把多面體(圖中①)看成表面是薄橡皮的中空立體。

(2)去掉多面體的乙個面,就可以完全拉開鋪在平面上而得到乙個平面中的直線形,像圖中②的樣子。假設f′,e′和v′分別表示這個平面圖形的(簡單)多邊形、邊和頂點的個數,我們只須證明f′-e′+v′=1。

(3)對於這個平面圖形,進行三角形分割,也就是說,對於還不是三角形的多邊形陸續引進對角線,一直到成為一些三角形為止,像圖中③的樣子。每引進一條對角線,f′和e′各增加1,而v′卻不變,所以f′-e′+v′不變。因此當完全分割成三角形的時候,f′-e′+v′的值仍然沒有變。

有些三角形有一邊或兩邊在平面圖形的邊界上。

(4)如果某乙個三角形有一邊在邊界上,例如圖④中的△abc,去掉這個三角形的不屬於其他三角形的邊,即ac,這樣也就去掉了△abc。這樣f′和e′各減去1而v′不變,所以f′-e′+v′也沒有變。

(5)如果某乙個三角形有二邊在邊界上,例如圖⑤中的△def,去掉這個三角形的不屬於其他三角形的邊,即df和ef,這樣就去掉△def。這樣f′減去1,e′減去2,v′減去1,因此f′-e′+v′仍沒有變。

(6)這樣繼續進行,直到只剩下乙個三角形為止,像圖中⑥的樣子。這時f′=1,e′=3,v′=3,因此f′-e′+v′=1-3+3=1。

(7)因為原來圖形是連在一起的,中間引進的各種變化也不破壞這事實,因此最後圖形還是連在一起的,所以最後不會是分散在向外的幾個三角形,像圖中⑦那樣。

(8)如果最後是像圖中⑧的樣子,我們可以去掉其中的乙個三角形,也就是去掉1個三角形,3個邊和2個頂點。因此f′-e′+v′仍然沒有變。

即f′-e′+v′=1

成立,於是尤拉公式:

f-e+v=2得證。

8樓:c帥軍

e^ix=cosx+isinx:先把等式左右兩邊的自變數換成x,逐項其級數,再把變數換成ix,就會發現e^ix=cosx+isinx

pv=nrt是什麼公式

9樓:活寶

pv=nrt是理想氣體狀態方程,又稱理想氣體定律、普適氣體定律,是描述理想氣體在處於平回衡態時答,壓強、體積、物質的量、溫度間關係的狀態方程。

理想氣體狀態公式是建立在玻義耳-馬略特定律、查理定律、蓋-呂薩克定律等經驗定律基礎上的。

其中,p表示壓強、v表示氣體體積、n表示物質的量、t表示絕對溫度、r表示氣體常數。

所有氣體r值均相同,如果壓強、溫度和體積都採用國際單位(si),r=8.314帕·公尺3/摩爾·k。

如果壓強為大氣壓,體積為公升,則r=0.0814大氣壓·公升/摩爾·k。

ps:r為常數。

10樓:匿名使用者

什麼是理想氣體,理想氣體的狀態方程序

11樓:

理想氣體狀態方程

p表示壓強 v表示體積(l) n表示物質的量 r是乙個常數 t表示開爾文溫度(k)

12樓:明月松

理想氣抄體狀態方程(ideal gas,equation of state of),也稱理想氣體定律或克拉伯龍方程,描述理想氣體狀態變化規律的方程。質量為m,摩爾質量為m的理想氣體,其狀態參量壓強p、體積v和絕對溫度t之間的函式關係為pv=mrt/m=nrt

13樓:匿名使用者

pv=nrt和理想氣

體狀bai態方程是同義詞du.理想氣體狀態方程(也稱zhi理想氣體定律

dao、克拉佩版

龍方程)是描述理想氣體在權處於平衡態時,壓強、體積、物質的量、溫度間關係的狀態方程。它建立在波義耳定律、查理定律、蓋-呂薩克定律等經驗定律上。

14樓:

理想氣體

狀態方程,copy也稱理想氣體定律或克拉bai伯龍方程。

是描du述理想氣體zhi狀態變化規律的。

式中m和daon分別是理想氣體的摩爾質量和物質的量;r是氣體常量,m是氣體的質量,p為壓強

r=8.31441±0.00026j/(mol·k)

這個公式是怎麼推導出來的要詳細過程

將圓台補成圓椎 則圓台的體積等於大圓椎減去小圓椎的體積 圓椎的體積公式為v 1 3底面積乘高 球的體積公式怎麼推導出來的,要詳細的過程 如果您學了微積分,那麼可以積分求球的體積公式。把表面分成來許多近 自似方格,每個方格面積ds,連線方格點與球心,得到高等於r的稜錐體,每個的微體積dv 1 3 ds...

dXU這個公式是怎麼回事?怎麼推導出來的?那本書上有

這就是函式積的微分公式的直接推論 d fg dx df dx g dg dx f令f u g v 就有d u v dx du dx v dv dx u 感覺是公式寫錯了,應該是 d u v dx du dx v dv dx u 才對啊 分部積分法的公式 62616964757a686964616fe...

尤拉公式的推導過程,尤拉公式如何推匯出來

複變函式論裡的尤拉公式 e ix cosx isinx,e是自然對數的底,i是虛數單位。它將三角函式的定義域擴大到複數,建立了三角函式和指數函式的關係,它在複變函式論裡佔有非常重要的地位。e ix cosx isinx的證明 因為e x 1 x 1 x 2 2 x 3 3 x 4 4 cosx 1 ...