1樓:匿名使用者
一般來說,等價無窮小的替換,乘除法中可以用。加減法中盡量不要用。
至於你說的只替換分子,不替換分母;或者只替換分母,不替換分子。這都是在等價無窮小替換中常見的情況。
因為等價無窮小的替換原則是從複雜、難的無窮小,替換成簡潔容易的無窮小。
所以如果分子或分母中,一方已經是簡潔容易的無窮小了,當然就無需替換這一方了。
2樓:匿名使用者
常見的等價無窮小有:
ln(1+x)…………x
e^(x)-1…………x
[n次根號下(1+x)] - 1 ………………x/n
tanx…………x
arcsinx…………x
1-cosx…………x²/2
等價無窮小是現代詞,是乙個專有名詞,指的是數學術語,是大學高等數學微積分使用最多的等價替換。
無窮小就是以數零為極限的變數。
確切地說,當自變數x無限接近某個值x0(x0可以是0、∞、或是別的什麼數)時,函式值f(x)與零無限接近,即f(x)=0(或f(x0)=0),則稱f(x)為當x→x0時的無窮小量。
例如,f(x)=(x-1)2是當x→1時的無窮小量,f(n)=1/n是當n→∞時的無窮小量,f(x)=sinx是當x→0時的無窮小量。特別要指出的是,切不可把很小的數與無窮小量混為一談。
等價無窮小:
從無窮小的比較裡可以知道,如果lim b/a^n=常數,就說b是a的n階的無窮小, b和a^n是同階無窮小。特殊地,如果這個常數是1,且n=1,即lim
b/a=1,則稱a和b是等價無窮小的關係,記作a~b
等價無窮小在求極限時有重要應用,我們有如下定理:假設lim a~a'、b~b'則:lim a/b=lim a'/b'
現在我們要求這個極限 lim(x→0) sin(x)/(x+3)
根據上述定理 當x→0時 sin(x)~x (重要極限一) x+3~x+3 ,那麼lim(x→0) sin(x)/(x+3)=lim(x→0)
x/(x+3)=1
什麼時候求極限可以用等價無窮小替換,是不是只有以下三種情況?另外第三種情況是什麼意思?謝啦! 10
3樓:nice千年殺
是啊。x趨於0時候,求極限,可以運用等價無窮小來求解。x趨於0時候,求f(x²/sin²x)也可以使用等價無窮小求解。x²和sin²x是等價無窮小,所以可以求得函式的極限。
等價無窮小:高數中常用於求x趨於0時候極限,當然,x趨於無窮的時候也可求,轉化成倒數即成為等價無窮小。
拓展資料常用等價無窮小:x趨於0時,x和sinx是等價無窮小;sinx和tanx是等價無窮小;tanx和ln(1+x)是等價無窮小;ln(1+x)和e^x-1是等價無窮小;e^x-1和arcsinx、arctanx是等價無窮小;等價無窮小,可以用乘法,但是不能互相加減,否則誤差會增大到不可接受的地步。
4樓:又吃成長快樂哦
樓主求採納~
當為乘積時可用等價無窮小代換求極
限但是當加減時就需要先計算
舉個例子
(sinx-tanx)/x^3 x趨近於0的極限sinx=x+o1(x) tanx=o2(x)sinx-tanx=o1(x)-o2(x)=o(x)[o1(x)o2(x)o(x)都是x高階無窮小]因為二者相減把已知的部分都抵消掉了 剩下的部分是o(x)是乙個未知階數的無窮小(只知道它比x高階) 可能是x^2的等價無窮小 這是極限為∞ 也可能是x^3的等價無窮小 這時極限為常數 如果是x^4的等價無窮小 那麼極限就是0了
所以當加減變換把已知部分抵消掉的時候不能用等價無窮小代換否則就可以
比如說sinx+tanx=2x+o(x) 就是0了還有比較特殊的情況 比如說sinx-tanx/x x趨近於0的極限這時等價無窮小代換可得o(x)/x 因為o(x)是x的高階無窮小 所以極限為零
總的來說就是不能肯定的時候 代換時加上高階無窮小餘項
5樓:暮雪
這個,其實第二個條件不絕對,加減也行的,我刷到過好多都是加減做出來的題。我總結的規律是凡是加減轉換後等於0的基本不行,其他可以
6樓:熱心網友
什麼時候求極限可以用等價無窮小替代呢?是有三種情況的,你說的很對
7樓:小威
嗯,如果你想求極限,可以用等價無窮小替換嗯,你想問是不是有以下三種?我覺得你回答的都很正確,相信你自己的答案,只能覺得
8樓:遺忘的果果
答: 用等價無窮小代換的大前提:用等價無窮小代換的量必須它本身就是無窮小.
原則:等價無窮小的代換,一定是要在乘除的情況下.對於加減的代換,必須是先進行極限的四則運算後,才可以考慮
9樓:匿名使用者
必須都滿足,(3)就是字面意思。
另外你可以選擇完全不記等價無窮小而直接使用泰勒公式。
10樓:匿名使用者
加減拆分時,必須拆下來的每一項都分別有極限才行,否則不能拆
11樓:孫唾唾
1. a/b型,如果分母是 x 的 k 次冪,則把分子到 k 次冪;如果分子是 x 的 k 次冪,則把分母到 k 次冪。
2. a-b型,將a、b分別到係數不相等的 x 的最低次冪為止。
12樓:匿名使用者
極限是永遠無窮大的,他沒有什麼可以代替,要不然他怎麼會叫極限呢?也沒有什麼三種情況,只有一種情況就是永遠大。
13樓:匿名使用者
3的意思是指 這個x可以拓展成其他初等函式 只要它是無窮小的 也就是滿足(1) 如果你聽過張宇老師的課就知道什麼意思了
14樓:匿名使用者
這些都不是問題問題的存在都能解決的決絕,只要能解決的都不是問題。
15樓:鞏東園
唉,這題都忘了,高中的時候會,現在都不上學十年了
等價無窮小替換時如果分子是加減,而分母是連乘.分母能用等價無窮小代替嗎?
16樓:永恆的
結論:連乘的可以直接等價無窮小替換,所以分母可以;
而加減的不可以直接替換,因此分子不可以。
加減項中如果每一項都是無窮小,各自用等價無窮小替換以後得到的結果不是0,則是可以替換的。用泰勒公式求極限就是基於這種思想。
例子:求當x→0時,(tanx-sinx)/(x^3)的極限。
用洛必塔法則容易求得這個極限為1/2。
我們知道,當x→0時,tanx~x,sinx~x,若用它們代換,結果等於0,顯然錯了,這是因為x-x=0的緣故;
而當x→0時,tanx~x+(x^3)/3,sinx~x-(x^3)/6,它們也都是等價無窮小(實際上都是3階麥克勞林公式),若用它們代換:tanx-sinx~(x^3)/2≠0,就立即可以得到正確的結果。
什麼時候求極限可以用等價無窮小替換,是不是只有以下三種情況
是啊。x趨於0時候,求極限,可以運用等價無窮小來求解。x趨於0時候,求f x sin x 也可以使用等價無窮小求解。x 和sin x是等價無窮小,所以可以求得函式的極限。等價無窮小 高數中常用於求x趨於0時候極限,當然,x趨於無窮的時候也可求,轉化成倒數即成為等價無窮小。拓展資料常用等價無窮小 x趨...
判斷級數斂散性為什麼能用等價無窮小替換
級數求和過程中不存在無窮小,每一項都是常數。如果只是單純比較n趨於無窮大時兩級數的對應項比值,那麼這是毫無意義的。最簡單的例子就是交錯級數。即便是正項級數,你也需要知道任何乙個級數,你可以將其中任意項合併或拆分以改變通項的 階數 而其斂散性不變。其實級數的收斂性的準確定義是從任意項n n 0 開始,...
當x0時,tanx與什麼成等價無窮小
lim x 0 tanx x lim x 0 sinx x 1 cosxsinx x極限是1。1 cosx極限也是1所以lim x 0 tanx x 1所以tanx x。無窮小就是以數零為極限的變數。價無窮小一般只能在乘除中替換,在加減中替換有時會出錯 加減時可以整體代換,不能單獨代換或分別代換 等...