1樓:多__愛你
lim(x→0)tanx/x=lim(x→0)(sinx/x)*1/cosxsinx/x極限是1。
1/cosx極限也是1所以lim(x→0)tanx/x=1所以tanx~x。
無窮小就是以數零為極限的變數。
價無窮小一般只能在乘除中替換,在加減中替換有時會出錯(加減時可以整體代換,不能單獨代換或分別代換)。
等價無窮小的使用條件是什麼,像這題可以用等價無窮小嗎?把tanx換成x嗎?
2樓:敏敏之中青鳥
等價無窮小的使用條件是:1、被代換的量,在去極限的時候極限值為0。
2、被代換的量,作為被乘或者被除的元素時可以用等價無窮小代換,但是作為加減的元素時就不可以。
這個題為乘除關係,可以用等價無窮小
3樓:最萌旋哥
不可以,這是1^∞型,e^lim (x→0)(1/x^2)*(tan x/x)再用洛必達往下拖,最後的e^1/3
fx為分段函式,當x0時,fx1x,當x0時
x 1的原函式是ln x c,但是f x 又不是x 1,他在0處有意義,x 1在0處無意義就捨去ln x c的定義域就是x 0 f x 為分段函式,當x 0時,f x 1 x,當x 0時,f x 0,為什麼不存在定積分 50 高數里有反常積分這一章,不知道你看了沒。裡面涉及反常積分收斂還是發散這個內...
設函式f(x),當x 0時,f(x)x 1,當x 0時,f(x)等於3的x次方
分3種情況 1 x 1 2時,f x f x 1 2 3 x 3 x 1 2 3 1 3 x 1 2 1,顯然成立。2 x 0時f x f x 1 2 x 1 x 1 2 1 2x 3 2 1,2x 1 2,1 41,3 x x 1 2 0,顯然成立。求三者的並集得x 1 4,為所求。已知f x 是...
x0時,yxsin1x,當x0時,y0,證不可導
參考下題,區別只有x的次數,把2換成3就可以了 y 0 lim t 0 y t y 0 t lim t 0 sint t 1 t 0 當x 0時,xy sinx,y xy cosx,y x cosx y x y 0 lim 函式當x不等於0時,y x 2sin1 x,當x 0時,y 0,在x 0處的...