請問,全微分,方向導數,偏導數,連續之間的關係怎麼理清楚?有沒有從定義或某種方法說明的

2021-04-17 20:33:15 字數 3155 閱讀 1323

1樓:free略略略

方向導數存在不能推出偏導數存在

2樓:海闊天空

方向導數就是沿著各個方向。偏導數只是沿著座標軸。因此,方向導數存在,偏導數就存在。另外,偏導數連續,可以推出可微。

偏導連續與全微分存在的關係?

3樓:匿名使用者

全微分若存在,偏導數必須存在

而反之偏導數都存在

全微分不一定存在

所以二者的關係是

全微分存在是偏導數連續的

充分不必要條件

那麼反之偏導數連續是全微分存在的必要不充分條件,選擇a

4樓:我家平凡加藤惠

偏導數連續必定可微

反之不成立,所以應該是a。

偏導數與方向導數的關係,哪個存在能推出哪個存在

5樓:一刀見笑

偏導數存在,是可導的必要條件,偏導數連續是可導的充分條件,當然這是針對可導的

偏導數存在,方向導數就是存在的~

怎麼給人講清楚多元函式全微分與偏導數的關係

6樓:pasirris白沙

1、偏導數,partial differentiation,一般是指沿著 x 方向、或 y 方向、

或 z 方向的導數;導數在美語中,喜歡用 derivative。

2、無論是沿著 x、y、z 哪個方向的導數,計算導數的方法,跟一元函式

求導數的方法,完全一樣;對 x 方向求導時,將 y、z 當成常數對待;

3、進一步推廣到任意方向,在任意方向上的導數,稱為方向導數,directional

differentiation,或 directional derivative;

4、方向導數的概念,其實也是偏導數的概念,但是寫成全導數的形式;

5、方向導數寫成全導數 total differentiation 的形式,原因是方向導數的

計算一般是由 x、y、z 三個方向的偏導數的分量 component 相加而成;

6、全導數,就是全微分,在英文中沒有絲毫區別,導數跟微分的區別是中國

微積分概念,不是國際通用微積分的概念;

7、全微分的意思是 : 函式的的無窮小增量 du,**於三個方向上的無窮小

相加而成,即 du = (∂u/∂x)dx + (∂u/∂y)dy + (∂u/∂z)dz。

歡迎追問,歡迎討論,中英文不限。

最好是用英文討論,因為用英文討論,不會產生中文中的歧義,看英文**

不會出現概念的誤解,中文微積分的一些概念在英文中是不存在的,會產生

誤會而難以準確理解國際微積分的真實含義。

7樓:幸運的

dz=fx(x,y)δx+fy(x,y)δy,dz是全微分,fx、fy是對x、y的偏導數。

如果函式z=f(x, y) 在(x, y)處的全增量

δz=f(x+δx,y+δy)-f(x,y)

可以表示為

δz=aδx+bδy+o(ρ),

其中a、b不依賴於δx, δy,僅與x,y有關,ρ趨近於0(ρ=√[(δx)2+(δy)2]),此時稱函式z=f(x, y)在點(x,y)處可微分,aδx+bδy稱為函式z=f(x, y)在點(x, y)處的全微分,記為dz即

dz=aδx +bδy

該表示式稱為函式z=f(x, y) 在(x, y)處(關於δx, δy)的全微分。

在數學中,乙個多變數的函式的偏導數,就是它關於其中乙個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

在一元函式中,我們已經知道導數就是函式的變化率。對於二元函式我們同樣要研究它的「變化率」。然而,由於自變數多了乙個,情況就要複雜的多。

在xoy平面內,當動點由p(x0,y0)沿不同方向變化時,函式f(x,y)的變化快慢一般說來是不同的,因此就需要研究f(x,y)在(x0,y0)點處沿不同方向的變化率。

在這裡我們只學習函式f(x,y)沿著平行於x軸和平行於y軸兩個特殊方位變動時,f(x,y)的變化率。

偏導數的運算元符號為:∂。

偏導數反映的是函式沿座標軸正方向的變化率。

表示固定面上一點的切線斜率。

偏導數f'x(x0,y0)表示固定面上一點對x軸的切線斜率;偏導數f'y(x0,y0)表示固定面上一點對y軸的切線斜率。

高階偏導數:如果二元函式z=f(x,y)的偏導數f'x(x,y)與f'y(x,y)仍然可導,那麼這兩個偏導函式的偏導數稱為z=f(x,y)的二階偏導數。

二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy.

注意:f"xy與f"yx的區別在於:前者是先對x求偏導,然後將所得的偏導函式再對y求偏導;後者是先對y求偏導再對x求偏導.

當f"xy與f"yx都連續時,求導的結果與先後次序無關。

8樓:向真丶

1.偏導數不存在

,全微分就不存在

2.全微分若存在,偏導數必須存在

3.有偏導數存在,全微分不一定存在

微分是函式改變量的線性主要部分,導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生乙個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數。

9樓:匿名使用者

偏導數存在是全微分的必要而非充分條件

誰能把連續,可導,可微,偏導等等之間的關係理一下

10樓:然然小飛

一元函式:來可導必然連源續,連續

推不出可bai導,可導與可微du等價。多元函zhi數:可偏導與連dao續之間沒有聯絡,也就是說可偏導推不出連續,連續推不出可偏導。

多元函式中可微必可偏導,可微必連續,可偏導推不出可微,但若一階偏導具有連續性則可推出可微。

這之間的關係上面已經說的很清楚,我補充一點理解上的東西。大學數學之所以叫微積分學,而沒有叫導(數)積分學,很大原因就是微積分學基本上就是乙個概念:以直代曲,而微分正是為了這個而產生得數學表達,因此微分是最基本的,一元函式微分和可導是等價的概念,可以推出原來函式的連續性質,而多元函式可微分則能推出任意方向導數的存在性,也可以推出原來函式的連續性,從微分概念的產生得目的上講,推出這些是自然而然的事情。

偏導數和方向導數是不是沒有任何關係

是的,兩者處於不同領域。在xoy平面內,當動點由p x0,y0 沿不同方向變化時,函式f x,y 的變化快慢是不同的,因此就需要研究f x,y 在 x0,y0 點處沿不同方向的變化率。函式沿著平行於x軸和平行於y軸兩個特殊方位變動時,f x,y 的變化率。偏導數的表示符號為 偏導數反映的是函式沿座標...

請問偏導數和全微分有什麼區別?謝謝

1 偏導數不存在,全微分就不存在 2 全微分若存在,偏導數必須存在 3 有偏導數存在,全微分不一定存在。偏導和全微分物理區別是什麼?1 物理 意義不同,偏導的物理意義是單一引數的變化,引起的物理量的變化率。全微分的物理意義是所有引數同時變化,所引起函式的整體變化。2 幾何意義不同,偏導數的幾何意義是...

全微分與偏導數的定義是什麼,偏導和全微分物理區別是什麼?

1.二元函式中,偏導數存在是全微分存在的必要條件 2.偏導數連續是全微分存在的充分條件3.若p x,y dx q x,y dy du x,y 則稱pdx qdy 0為全微分方程,顯然,這時該方程通解為u x,y c c是任意常數 根據二元函式的全微分求積定理 設開區域g是一單連通域,函式p x,y ...