1樓:匿名使用者
你的問題不copy夠嚴密。三維空間的就錯了,m=3時應該是8。我可以幫你把題出難點兒:
n維空間被m個n-1維超平面最多分為幾個區域。這個我曾經推出來過,是個規律很簡單但是公式很繁瑣(分奇偶還有組合數),導致後來又忘了
學習高等數學,離散數學,線性代數需要具備多少數學知識?
2樓:匿名使用者
一、高等數學包括數學分析,主要就是微積分;高等代數,主要是線性代數的內容。
1、在學習高數之前首先要打好基礎。
2、初等數學知識不夠數量,或者掌握太少,變形變不過來,這樣就算知道高等數學,但是初等掌握不好,會遇到一定困難。
3、一些基本概念,導數的定義,連續性的定義以及基本公式表,微分公式表,這些基本的東西要記。積分公式表記不住,積分就過不了關。
二、離散數學主要研究的邏輯,集合論,抽象代數,布林運算等等,幾乎不涉及微積分,離散數學裡有一些演算法可能會用到線性代數的東西。
1、離散數學是研究離散量的結構及其相互關係的數學學科,是現代數學的乙個重要分支。它在各學科領域特別在電腦科學與技術領域有著廣泛的應用,同時離散數學也是計算機專業的許多專業課程必不可少的先行課程。
2、離散數學是傳統的邏輯學,集合論(包括函式),數論基礎,演算法設計,組合分析,離散概率,關係理論,圖論與樹,抽象代數(包括代數系統,群、環、域等),布林代數,計算模型(語言與自動機)等匯集起來的一門綜合學科。
3、學習離散數學的要求具備初等數學的知識就可以學習,如果已學過高等數學就更好。
三、線性代數是要學習齊次和非齊次方程組的解法,前面的基礎是行列式和矩陣,高中的基礎可以沒有,需要的是掌握初中數學的解的方程組,方程組會解,線性代數這部分計算上是沒問題的,剩下的是理解概念和解題的步驟了。
3樓:五月榴花照眼明
如果你專門學習數學那麼需要相當長的一段時間,況且你會發現你所學的數學和你的程式似乎沒有多麼大的聯絡.
那麼我建議你先去看看關於演算法和資料結構方面的書(《資料結構(c語言版)清華大學出版社》),如果你理解起來其中的演算法沒什麼困難,那麼以你現在的數學水平已經足夠了.如果不行的話,那麼你可以針對遇到的問題,比如在計算時間複雜度中用到的概率和期望的知識,圖資料結構需要你了解拓撲以及一些最優化方面的知識.
順便說一下,高等數學是乙個很籠統的說法.其中包括數學分析(主要就是微積分),高等代數(主要是線性代數的內容).老三高,就是指高等數學,高等幾何,高等代數.
這是基礎.如果你想在有所發展我建議你可以繼續學習"新三高",抽象代數(近世代數),拓撲,泛函分析.
當然關於計算機的具體還有分形幾何,概率論等.
ps:我是學數學的
4樓:傘樂
我覺得影響不是很大啦,而且高等數學和線性代數只要慢慢學,有人指導就很快能學好,離散數學有點抽象,你說的這四門我都學過。我自己覺得c語言的話還是電腦方面的知識重要一點,數學要求不是很高,除非你要便那種很複雜很複雜的
5樓:匿名使用者
數學是一種樂趣,主要是積累和運用,要從小養成好學的習慣,數學必然就不差了,現在也可以補一補數學,爭取把數學成績提高,還可以給沒步算式加個小標題,以免不知道怎樣算下去了.
6樓:匿名使用者
只要你認真學!~~什麼事情都難不倒你!我相信你!~
7樓:圓蛤
很難吧,離散和線代應該不怎麼要緊,線代主要要理解向量
微積分麻煩,導數,向量,很多知識要掌握
8樓:匿名使用者
你只要多多看書就好了
高等數學都學什麼?
9樓:demon陌
高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
10樓:愛要一心
這是目錄:
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、微分方程初步
五、向量代數 空間解析幾何
六、多元函式微分學
七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數
我剛剛上完大一,高數主要就是學微積分,因為大學裡的其他學科很多都要用到微積分,所以要會算,那些微積分的公式都要很熟悉的。 先是學導數 ,微分就是在式子後面乘乙個dx,而積分就是微分的逆運算。
11樓:匿名使用者
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、微分方程初步
五、向量代數 空間解析幾何
六、多元函式微分學
七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數
它的資料和講義,網上有很多。
12樓:匿名使用者
主要就是定積分還有微積分方面的知識
13樓:天涯客
函式,極限,連續
一元函式微分
一元函式積分
多元函式微分
多元函式積分
常微分方程
大學裡面高等數學都學的什麼啊
14樓:薔祀
在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。
理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:
線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。
微積分的基本概念和內容包括微分學和積分學。
微分學的主要內容包括:極限理論、導數、微分等。
積分學的主要內容包括:定積分、不定積分等。
從廣義上說,數學分析包括微積分、函式論等許多分支學科,但是現在一般已習慣於把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。
數理統計是伴隨著概率論的發展而發展起來的乙個數學分支,研究如何有效的收集、整理和分析受隨機因素影響的資料,並對所考慮的問題作出推斷或**,為採取某種決策和行動提供依據或建議。
概率論是研究隨機現象數量規律的數學分支。隨機現象是相對於決定性現象而言的。在一定條件下必然發生某一結果的現象稱為決定性現象。
例如在標準大氣壓下,純水加熱到100℃時水必然會沸騰等。隨機現象則是指在基本條件不變的情況下,每一次試驗或觀察前,不能肯定會出現哪種結果,呈現出偶然性。例如,擲一硬幣,可能出現正面或反面。
隨機現象的實現和對它的觀察稱為隨機試驗。隨機試驗的每一可能結果稱為乙個基本事件,乙個或一組基本事件統稱隨機事件,或簡稱事件。典型的隨機試驗有擲骰子、扔硬幣、抽撲克牌以及輪盤遊戲等。
線性代數是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題。
因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。
擴充套件資料:
19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。
原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。如數學分析中研究的限於實變數,而其他數學分支所研究的還有取復數值的復變數和向量、張量形式的。
以及各種幾何量、代數量,還有取值具有偶然性的隨機變數、模糊變數和變化的(概率)空間——範疇和隨機過程。描述變數間依賴關係的概念由函式發展到泛函、變換以至於函子。
與初等數學一樣,高等數學也研究空間形式,只不過它具有更高層次的抽象性,並反映變化的特徵,或者說是在變化中研究它。例如,曲線、曲面的概念已發展成一般的流形。
按照埃爾朗根綱領,幾何是關於圖形在某種變換群下不變性質的理論,這也就是說,幾何是將各種空間形式置於變換之下來來研究的。
無窮進入數學,這是高等數學的又一特徵。現實世界的各種事物都以有限的形式出現,無窮是對他們的共同本質的一種概括。所以,無窮進入數學是數學高度理論化、抽象化的反映。
數學中的無窮以潛無窮和實無窮兩種形式出現。
在極限過程中,變數的變化是無止境的,屬於潛無窮的形式。而極限值的存在又反映了實無窮過程。最基本的極限過程是數列和函式的極限。
數學分析以它為基礎,建立了刻畫函式區域性和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。
另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。還有許多學科的研究物件本身就是無窮多的個體,也就說是無窮集合,例如群、環、域之類及各種抽象空間。這是數學中的實無窮。
能夠處理這類無窮集合,是數學水平與能力提高的表現。
為了處理這類無窮集合,數學中引進了各種結構,如代數結構、序結構和拓撲結構。另外還有一種度量結構,如抽象空間中的範數、距離和測度等,它使得個體之間的關係定量化、數位化,成為數學的定性描述和定量計算兩方面的橋梁。上述結構使得這些無窮集合具有豐富的內涵,能夠彼此區分,並由此形成了眾多的數學學科。
數學的計算性方面。在初等數學中甚至佔了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。
在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的複雜計算問題。
參考資料:
15樓:於昌斌的
主要學的是函式極限、微積分、級數、向量、不定積分。下面是目錄:
一、上冊:
1函式與極限。
2導數與微分。
3導數的應用,。
4不定積分。
5定積分。
6微分方程。
7多元函式微分法。
8二重積分
二、下冊:
1行列式。
2矩陣。
3向量。
4線性方程組。
5相似矩陣及二次型。
6概率。
7隨機變數及分布。
8隨機變數的數字特徵。
9大數定理及中心極限定理。
高等數學是大學必修課之一,分上下冊,一般在大一每個學期學一冊。此書為田玉芳編著,2023年出版,本書可作為高等學校理工類各專業,尤其是工科電子資訊類各專業本科生的高等數學教材或教學參考書,也可供學生自學使用。
線性代數問題證明 n維向量組a1 a2 an線性無關的充分
必要性因為任意n 1個n維向量一定線性相關,設a是任意一個n維向量,則向量組a,a1.a2 an必線性相關,又n維向量組a1.a2 an線性無關,a都可由他們線性表示。充分性若任一n維向量a都可由a1.a2 an線性表示,那麼,特別的,n維單位座標向量組也由他們線性表示。而a1.a2 an必可由n維...
求向量空間的維數,線性代數 求向量空間的維數,見下圖。
單個向量的維數與向量空間的維數有區別!本題令 a 1 得到單個向量三個座標 1,2,3 向量是三維的。但本題不要求乙個向量的維數,而是要求向量空間的維數。求向量空間的維數就是求向量組的秩,該向量組秩 r 1,選擇 b 矩陣 a1,a2,a3,a4,a5 的秩為 3 且 a1,a2,a3 的秩為 3,...
線性代數向量組的線性相關性問題,線性代數向量組線性相關和線性無關的問題
可以提取b,對 a,b 進行行初等變換時,a與b都是一樣的變換,不改變秩。這裡還有乙個做法,就是求出兩個向量組的相互線性表示的式子。觀察b1,a2,b3的分量為0的位置,不難發現b1 a1 a2 2,b2 a2 a1 2,b3 3a1 a2 2。所以向量組b1,b2,b3可以由a1,a2線性表示。從...