1樓:匿名使用者
1.先看級數通項是不是趨於0。如果不是,直接寫「發散」,ok得分,做下一題;如果是,轉到2.
2.看是什麼級數,交錯級數轉到3;正項級數轉到4.
3.交錯級數用萊布尼茲審斂法,通項遞減趨於零就是收斂。
4.正項級數用比值審斂法,比較審斂法等,一般能搞定。搞不定轉5.
5.看看這個級數是不是哪個積分定義式,或許能寫成積分的形式來判斷,如果積分出來是有限值就收斂,反之發散。如果還搞不定轉6。
6.在卷子上寫「通項是趨於0的,因此可以進一步討論」。寫上這句話,多少有點分。回去燒香保佑及格,over!
如何分辨級數是否收斂?
2樓:使用者名稱用
1.先看級數通項是不是趨於0。如果不是,直接寫「發散」,ok得分,做下一題;如果是,轉到2.
2.看是什麼級數,交錯級數轉到3;正項級數轉到4.
3.交錯級數用萊布尼茲審斂法,通項遞減趨於零就是收斂。
4.正項級數用比值審斂法,比較審斂法等,一般能搞定。搞不定轉5.
5.看看這個級數是不是哪個積分定義式,或許能寫成積分的形式來判斷,如果積分出來是有限值就收斂,反之發散。如果還搞不定轉6。
6.在卷子上寫「通項是趨於0的,因此可以進一步討論」。寫上這句話,多少有點分。回去燒香保佑及格,over!
3樓:aa故事與她
準確來說就是看最後的極限是多少 是否趨近於0
怎樣判斷無窮級數是否收斂
4樓:普海的故事
1.先看級數通項是不是趨於0。如果不是,直接寫「發散」,ok得分,做下一題;如果是,轉到2.
2.看是什麼級數,交錯級數轉到3;正項級數轉到4.
3.交錯級數用萊布尼茲審斂法,通項遞減趨於零就是收斂。
4.正項級數用比值審斂法,比較審斂法等,一般能搞定。搞不定轉5.
5.看看這個級數是不是哪個積分定義式,或許能寫成積分的形式來判斷,如果積分出來是有限值就收斂,反之發散。如果還搞不定轉6。
6.在卷子上寫「通項是趨於0的,因此可以進一步討論」。寫上這句話,多少有點分。回去燒香保佑及格,over!
5樓:匿名使用者
老師您好!
我遇到如下幾個斂散性判斷問題,想請教老師:
(4)我覺得,原式小於1/(n^2), 而1/(n^2)的級數是p>1的p-級數,是收斂的。所以原級數是收斂的——但答案卻是發散
(8)我以為這是很明顯的發散(把sin(pi/3^n)忽略之),誰知答案是收斂
(14)我完全沒有思路
4.你用的這個比較判別法是對正項級數來說的,這個級數不是正項級數,除了n為1的時候,都是後邊的那個大,所以是發散的
8.大的發散小的不一定分散的
14看看這個是不是交錯級數呢
判斷級數收斂性的方法有好幾種的啊,你總結了嗎?關鍵你要分清楚他們都是對什麼型別的級數應用的,不要用亂了
6樓:平民百姓為人民
1、首先,拿到乙個數項級數,我們先判斷其是否滿足收斂的必要條件:
若數項級數收斂,則 n→+∞ 時,級數的一般項收斂於零。
(該必要條件一般用於驗證級數發散,即一般項不收斂於零。)2、若滿足其必要性。接下來,我們判斷級數是否為正項級數:
若級數為正項級數,則我們可以用以下的三種判別方法來驗證其是否收斂。(注:這三個判別法的前提必須是正項級數。)
3、三種判別法
①.比較原則;
②.比式判別法,(適用於含 n! 的級數);
③.根式判別法,(適用於含 n次方 的級數);
(注:一般能用比式判別法的級數都能用根式判別法)4、若不是正項級數,則接下來我們可以判斷該級數是否為交錯函式:
5、若不是交錯函式,我們可以再來判斷其是否為絕對收斂函式:
6、如果既不是交錯函式又不是正項函式,則對於這樣的一般級數,我們可以用阿貝爾判別法和狄利克雷判別法來判斷。
詳細條件請參考:http://jingyan.
級數收斂判別
7樓:匿名使用者
不成立;
原命題:小的發散則大的也發散;
逆命題:大的發散是否小的發散;
逆否命題:大的收斂則小的也收斂;
原命題=逆否命題,都成立,即是正項級數的比較判別法口訣;
而其逆命題則不成立。
8樓:
逆命題不成立
舉個簡單的例子吧
1+1/2+1/3+1/4+1/5+....1/n小的收斂而大的發散
請問級數收斂的判別有哪幾種?
9樓:匿名使用者
1、對於所有級數都適用的根本方法是:柯西收斂準則。因為它的本質是將級數轉化成數列,從而這是乙個最強的判別法,柯西收斂準則成立是級數收斂的充分必要條件。
侷限性:有一些數列的特徵太過明顯,可以用更加簡潔的判別法去判別,用柯西收斂原理是浪費時間;另一方面,如果級數本身過於複雜,用柯西收斂準則也未必能很快得到證明。
2、對於正項級數,乙個基本但不常用的方法是部分和有界,這同樣是級數收斂的充分必要條件,這是正項級數中最強的判別法之一,侷限性也是顯然的:通常來說乙個級數的和函式並不好求,用這種方法行不通,因此這個方法通常只有理論上的意義。
3、對於正項級數,比較判別法是乙個相當有效的判別法,通過找乙個新正項級數,比較通項,如果原級數的通項小,新級數收斂,則原級數收斂;如果新級數發散,原級數通項大,則原級數發散,通常在判別過程中使用其極限形式。
侷限性:當級數過於複雜時,要找的那個新級數究竟是什麼很難判斷,通常的方法是對原級數的通項做泰勒,以找到與之等價的p級數。
4、對於正項級數,有積分判別法:如果x>=1且f(x)〉=0且遞減,則無窮級數(通項為f(n))與1到正無窮對f(x)作的積分同斂散。這個辦法對於某些級數特別有效。
侷限性:由於其本質是將級數化成了反常積分,如果化成的反常積分的收斂性難以判斷,則有可能該方法就把問題複雜化了。
5、對於正項級數,還有拉貝判別法與高斯判別法。拉貝判別法是將級數與通項為1/(n^alpha)的級數做比較,如果當n充分大時,n(a[n]/a[n+1]-1)〉=r>1,那麼級數收斂。
高斯判別法將級數與通項為1/(n(lnn)^alpha)的級數做比較,如果a[n]/a[n+1]=1+1/n+beta/nlnn+o(1/nlnn),其中beta〉1,則級數收斂。
侷限性:這兩個判別法已經很強了,大部分級數都可以用這兩個判別法去估計,但是仍然不是全部級數都有效的,如果級數比通項為1/(n(lnn)^alpha)的級數收斂得還慢,就無效了,這時應該去想比較判別法或者其他辦法,可能需要比較強的技巧。
6、對於交錯級數,有萊布尼茲判別法:如果級數符號交替且通項絕對值遞減,則級數收斂。侷限性:如果級數不滿足上述條件,顯然就失效了。
7、一般項級數的阿貝爾判別法和狄利克雷判別法:
阿貝爾判別法:如果級數的通項可以拆成兩部分的乘積,其中一部分隨下標單調有界,以另一部分為通項的級數收斂,那麼原級數收斂。
狄利克雷判別法:如果級數的通項可以拆成兩部分的乘積,其中一部分隨下標單調趨於零,以另一部分為通項的級數的部分和有界,那麼原級數收斂。
這兩個判別法對於一些通項為兩項以上乘積形式的級數非常有效。侷限性:如果拆不出來,那就沒辦法了。不過通常的題最多就考到這裡,基本上應該可以判別。
10樓:是你找到了我
利用部分和數列判別法、
比較原則、比式判別法、根式判別法、積分判別法以及拉貝判別法等。
對於正項級數,比較判別法是乙個相當有效的判別法,通過找乙個新正項級數,比較通項,如果原級數的通項小,新級數收斂,則原級數收斂;
如果新級數發散,原級數通項大,則原級數發散,通常在判別過程中使用其極限形式。侷限性:當級數過於複雜時,要找的那個新級數究竟是什麼很難判斷,通常的方法是對原級數的通項做泰勒,以找到與之等價的p級數。
11樓:
上面幾樓說的都對,但是都不全。我來說個全一些的。(純手工,絕非copy黨)
首先要說明的是:沒有最好用的判別法!所有判別法都是因題而異的,要看怎麼出,然後才選擇最恰當的判別法。下面是一些常用的判別法:
一、對於所有級數都適用的根本方法是:柯西收斂準則。因為它的本質是將級數轉化成數列,從而這是乙個最強的判別法,柯西收斂準則成立是級數收斂的充分必要條件。
侷限性:有一些數列的特徵太過明顯,可以用更加簡潔的判別法去判別,用柯西收斂原理是浪費時間;另一方面,如果級數本身過於複雜,用柯西收斂準則也未必能很快得到證明。
二、對於正項級數,乙個基本但不常用的方法是部分和有界,這同樣是級數收斂的充分必要條件,這是正項級數中最強的判別法之一,侷限性也是顯然的:通常來說乙個級數的和函式並不好求,用這種方法行不通,因此這個方法通常只有理論上的意義。
三、對於正項級數,比較判別法是乙個相當有效的判別法,通過找乙個新正項級數,比較通項,如果原級數的通項小,新級數收斂,則原級數收斂;如果新級數發散,原級數通項大,則原級數發散,通常在判別過程中使用其極限形式。侷限性:當級數過於複雜時,要找的那個新級數究竟是什麼很難判斷,通常的方法是對原級數的通項做泰勒,以找到與之等價的p級數。
四、對於正項級數,有柯西判別法和達朗貝爾法。這些樓上都已說到,它的實質是找等比級數與之比較。另外柯西判別法比達朗貝爾判別法強,這是因為比值的下極限小於等於開n次根號的下極限,比值的上極限大於等於開n次根號的上極限(即二樓說的這兩個判別法等同是不對的)。
侷限性:如果原級數的階低於任何乙個等比級數,這方法就完全失效了。
五、對於正項級數,有積分判別法:如果x>=1且f(x)〉=0且遞減,則無窮級數(通項為f(n))與1到正無窮對f(x)作的積分同斂散。這個辦法對於某些級數特別有效。
侷限性:由於其本質是將級數化成了反常積分,如果化成的反常積分的收斂性難以判斷,則有可能該方法就把問題複雜化了。
六、對於正項級數,還有拉貝判別法與高斯判別法。拉貝判別法是將級數與通項為1/(n^alpha)的級數做比較,如果當n充分大時,n(a[n]/a[n+1]-1)〉=r>1,那麼級數收斂。高斯判別法將級數與通項為1/(n(lnn)^alpha)的級數做比較,如果a[n]/a[n+1]=1+1/n+beta/nlnn+o(1/nlnn),其中beta〉1,則級數收斂。
侷限性:這兩個判別法已經很強了,大部分級數都可以用這兩個判別法去估計,但是仍然不是全部級數都有效的,如果級數比通項為1/(n(lnn)^alpha)的級數收斂得還慢,就無效了,這時應該去想比較判別法或者其他辦法,可能需要比較強的技巧。
七、對於交錯級數,有萊布尼茲判別法:如果級數符號交替且通項絕對值遞減,則級數收斂。侷限性:如果級數不滿足上述條件,顯然就失效了。
八、一般項級數的阿貝爾判別法和狄利克雷判別法:
阿貝爾判別法:如果級數的通項可以拆成兩部分的乘積,其中一部分隨下標單調有界,以另一部分為通項的級數收斂,那麼原級數收斂。
狄利克雷判別法:如果級數的通項可以拆成兩部分的乘積,其中一部分隨下標單調趨於零,以另一部分為通項的級數的部分和有界,那麼原級數收斂。
這兩個判別法對於一些通項為兩項以上乘積形式的級數非常有效。侷限性:如果拆不出來,那就沒辦法了。不過通常的題最多就考到這裡,基本上應該可以判別。
九、絕對收斂性。如果乙個級數,以其通項的絕對值為通項的級數收斂,則原級數收斂。侷限性是顯然的:
如果以其通項的絕對值為通項的級數不收斂就無效了。通常的題目上很少會蠢到讓你去求絕對值,然後判斷正項級數的收斂性,從而這個辦法一般只有理論上的意義,除非題中明說讓你去判斷條件收斂性和絕對收斂性。
十、一些技巧。例如裂項求和,再利用數列中的一些性質等等。這類方法通常用於抽象級數,即並不把級數告訴你,只告訴你一些級數的特徵,然後叫你去判斷。
侷限性是顯而易見的:你想得到這樣的技巧麼?
好了,寫了這麼多手都酸了,希望對你有用。
解釋下級數判別的一句話,請問級數收斂的判別有哪幾種?
這話好像是我說的。我的意思是用達朗貝爾判別法能判別的級數,用柯專西判別法一定屬能夠判別。反過來則不一定。下面是 比值的下極限小於等於開n次根號的下極限,比值的上極限大於等於開n次根號的上極限 這句話的證明和用柯西判別法能判別但是用達朗貝爾判別法無法判別的乙個例子。見圖。請問級數收斂的判別有哪幾種?1...
級數n 1 1 nln n 1 n 是否收斂?如果收斂,是絕對收斂還是條件收斂
1 leibniz判別法來 1 nln n 1 單調遞減源 趨於0,故收斂bai。2 是du乘吧。若是除的話,zhi 通項1 1 n dao1 2 1 n n 不趨於0,顯然不收斂。乘的話,開啟,通項是 1 n 1 n 1 2 收斂,leibniz判別法 和 1 n 不收斂 合起來不收斂 判斷級數 ...
交錯級數是收斂還是發散,交錯級數是不是都是收斂的?
交錯級數如果滿足 leibniz 條件就肯定是收斂的,否則未必。交錯級數是不是都是收斂的?當然不是,an 1 n是交錯級數,但發散 有個萊布尼茲交錯級數判定定理 一般項遞減趨於0的交錯級數收斂 誰說的交錯級數必定是收斂的?比如1 1 1 1.這種交錯級數,能說他收斂麼?對的,交錯級數必收斂 如何判斷...