1樓:買可愛的人
a·a*=|a|e=3e
∴ a*=3a^(-1)
∴ |a*|=3³|a^(-1)|=27·1/3=9【附註】
|ka|=k^n·|a|
設a是三階矩陣,|a|=2,a的伴隨矩陣是a*,則|2a*|=()
2樓:子不語望長安
^④|解題步驟:
①伴隨矩陣a*有aa*=│a│e兩邊求行列式的值│a││a*│=││a│e│
②│a*│*2=│a│^3=8
③│a*│=4
④|2a*|=2^3*4=32
如果二維矩陣可逆,那麼它的逆矩陣和它的伴隨矩陣之間只差乙個係數,對多維矩陣不存在這個規律。然而,伴隨矩陣對不可逆的矩陣也有定義,並且不需要用到除法。
伴隨矩陣是矩陣理論及線性代數中的乙個基本概念,是許多數學分支研究的重要工具,伴隨矩陣的一些新的性質被不斷發現與研究。
3樓:demon陌
^伴隨矩陣a*有aa*=│a│e兩邊求行列式的值│a││a*│=││a│e│
即有│a*│*2=│a│^3=8
所以│a*│=4
|2a*|=2^3*4=32
如果二維矩陣可逆,那麼它的逆矩陣和它的伴隨矩陣之間只差乙個係數,對多維矩陣不存在這個規律。然而,伴隨矩陣對不可逆的矩陣也有定義,並且不需要用到除法。
伴隨矩陣是矩陣理論及線性代數中的乙個基本概念,是許多數學分支研究的重要工具,伴隨矩陣的一些新的性質被不斷發現與研究。
4樓:寂寞的楓葉
||2a*|=32。具體解答過程如下。
解:矩陣a的逆矩陣為a-1,伴隨矩陣為a*。那麼a*=|a|a-1=2a-1,|a|*|a-1|=1則|2a*|=|2*2a-1|=|4a-1|,而矩陣a是三階矩陣,那麼
|2a*|=|4a-1|
=4^3*|a-1|
=4^3*1/|a|
=64/2=32
1,設a為三階矩陣,|a|=2,a*為a的伴隨矩陣,則行列式|(3a^-1)-2a*|=____
5樓:匿名使用者
^-1/2,-9。
解析:1、|(3a^-1)-2a*|=|(3a^-1)-2|a|(a^-1)| =|-a^-1|=-|a^-1|=-1/2
2、d=(-1)^(1+3)*5+ (-1)^(2+3)*3+(-1)^(3+3)*(-7)+(-1)^(4+3)*4=5-3-7-4=-9
6樓:末你要
^^1、(3a^-1)-2a*|=|(3a^-1)-2|a|(a^-1)| =|-a^-1|=-|a^-1|=-1/2
2、 d=(-1)^(1+3)*5+ (-1)^(2+3)*3+(-1)^(3+3)*(-7)+(-1)^(4+3)*4=5-3-7-4=-9
矩陣a乘矩陣b,得矩陣c,方法是a的第一行元素分別對應乘以b的第一列元素各元素,相加得c11,a的第一行元素對應乘以b的第二行個元素,相加得c12,以此類推,c的第二行元素為a的第二行元素按上面方法與b相乘所得結果,以此類推。
如果二維矩陣可逆,那麼它的逆矩陣和它的伴隨矩陣之間只差乙個係數,對多維矩陣不存在這個規律。然而,伴隨矩陣對不可逆的矩陣也有定義,並且不需要用到除法。
7樓:匿名使用者
|^^1. |(3a^-1)-2a*|=|3a^(-1)-2|a|a^(-1)|=|-a(-1)|=(-1)^4*1/|a|=1/2
2.d=(-1)*5*(-1)^(3+1)+2*3*(-1)^(3+2)+1*4*(-1)^(3+4)
=-5-6-4=-15
覺得好請採納 祝學習進步
8樓:匿名使用者
|^(1) |(3a^-1)-2a*|=|(3a^-1)-2|a|(a^-1)| =|-a^-1|=-|a^-1|=-1/2
(2) d=(-1)^(1+3)*5+ (-1)^(2+3)*3+(-1)^(3+3)*(-7)+(-1)^(4+3)*4
=5-3-7-4=-9
已知三階矩陣a的特徵值為,已知三階矩陣A的特徵值為1,1,2,則矩陣B3A1的特徵值為
你好!如圖先化簡得出b與a的關係,再求出b的特徵值。經濟數學團隊幫你解答,請及時採納。謝謝!已知三階矩陣a的特徵值為1,1,2,設矩陣b a3 5a2,則行列式 b b 288。求矩陣的行列式通常通過因式分解並利用 ab a b 轉換為簡單矩陣的行列式的乘積。b a a 5i a a 5i 4 a ...
1,設a為三階矩陣,a2,a為a的伴隨矩陣,則行列式
1 2,9。解析 1 3a 1 2a 3a 1 2 a a 1 a 1 a 1 1 2 2 d 1 1 3 5 1 2 3 3 1 3 3 7 1 4 3 4 5 3 7 4 9 1 3a 1 2a 3a 1 2 a a 1 a 1 a 1 1 2 2 d 1 1 3 5 1 2 3 3 1 3 3...
二階和三階馬爾可夫特徵是什麼,二階,三階矩陣是什麼意思
在隨機理論中,bai把在某時刻的事件受du在這之前事件的zhi影響dao 其影響範圍有限的隨機內過程,稱為馬爾容可夫過程。乙個事件受在它之前的事件的影響的深遠程度,通常用在它之前的事件作為條件的概率來表達。受前乙個事件的影響,簡稱為馬爾可夫過程 受前兩個事件的影響,稱為二階馬爾可夫過程 受前三個事件...