高等數學,d怎麼錯了

2022-05-08 18:55:45 字數 804 閱讀 9460

1樓:匿名使用者

連續因為那處兩邊都趨近同一個值。不可導因為兩邊的導數值不同

2樓:匿名使用者

當 0 ≤ x < 1 時,

g(x) =∫<0,x>(1/2)(1+u^2)du = (1/2)(x+x^3/3)

當 1 ≤ x ≤ 2 時,

g(x) =∫<0,1>(1/2)(1+u^2)du + ∫<1,x>(1/3)(u-1)du

= 2/3 +(1/3)[u^2/2-u]<1, x> = 2/3 +(1/3)(x^2/2-x)+ 1/6

= 5/6 +(1/3)(x^2/2-x)

g(1) = 2/3

在閉區間 [0, 2], g(x) 有界,排除 a。

當 0 ≤ x < 1 時,g'(x) = (1/2)(1+x^2) > 0,

g(x) 單調增加, 排除 b。

limg(x) = 2/3, limg(x) = 2/3 = g(1),

g(x) 在 x = 1 處連續, 排除 c。

g(x) 在 x = 1 處,

左導數 = lim[g(x)-g(1)]/(x-1) (0/0)

= lim[g(x)]'/1 = lim(1+x^2)/2 = 1;

右導數 = lim[g(x)-g(1)]/(x-1)

= lim(1/3)(x-1) = 0.

故 g(x) 在 x = 1 處不可導, 排除 e, 選d。

3樓:斷線的粢鳶

1那裡斷點了,不能導,當然錯的

高等數學,反導,高等數學,反導

不能說微分就是求導而是微分是用求導得到的求導為y dy dx 而dy y dx,這是微分而積分就是 y dx y c 當然可以看作是求反導 在 x 0,2 區間內,x 0,0 sinx 1,則 0 1 x 1 x sinx 2 x,得 0 1 2 x 1 1 x sinx 1 1 x 0,2 dx ...

高等數學,函式,高等數學函式連續

設f x 等於x 2,滿足題意,0是極值點。函式是偶函式,肯定0處是極值點,因為f x f x 要麼是極大值要麼是極小值,0處的二階導數不等於0說明一階導數是變化的,說明函式不是一條橫線 高等數學函式連續 取特殊情況代進去即可。在特殊情況下不成立,那麼極限就不存在。獎勵嘞殼啊!我是我老婆大人有大量k...

高等數學求積分,高等數學求積分

詳細過程如圖rt 希望能幫到你解決問題 高等數學求積分 在積分過程中,x看作常量,y是積分變數,根據牛頓萊布尼茨公式求出被積函式的原函式代入上下限,即可求得結果,求解過程如下圖 用割補法來求的,把這個圖形的面積分為三塊,分別是 0,1 1,2 2,5 把x 2 3x 2在這三個區域的定積分值記為a1...