求函式y根號 x 2 9根號 x 2 8x

2021-09-05 16:13:37 字數 2895 閱讀 8669

1樓:戒貪隨緣

數學上函式y=f(x)的定義域為a,如果存在實數m滿足:①對於任意實數x∈a,都有f(x)≥m,②存在x0∈a,使得f (x0)=m,那麼我們稱實數m是函式y=f(x)的最小值;如果存在實數m滿足:①對於任意實數x∈a,都有f(x)≤m,②存在x0∈a,使得f (x0)=m,那麼我們稱實數m 是函式y=f(x)的最大值。

本題 對函式y=√(x^2+9)+ √(x^2-8x+41)y=√((x-0)^2+(0-3)^2)+ √((x-4)^2+(0+5)^2)

設p(x,0),c(0,3),d(4,-5)則y就是x軸上的動點p到上半平面的定點c和下半平面的定點d的距離之和當c、p、d共線時y最小

直線cd的方程是:2x+y-3=0

它與x軸的交點是(3/2,0)

得當p在(3/2,0)處,即x=3/2時,y取到最小值|cd|而|cd|=4√5

所以y的最小值是4√5

2樓:匿名使用者

又發現乙個方法,

這個方法根據是不等式

根號(a^2+b^2)+根號(c^2+d^2)>=根號((a+c)^2+(b+d)^2)

所以y>=根號(4^2+(3+5)^2)=4根號5;

在x=1.5時取得最小值。

下面是昨天做的方法。

//好難啊,不等式都忘光了,只能構造圖形來求了。

我算的最小值由x=1.5得到,由於計算出y是無理數,就不寫y了。

證明如下:

y=根號(x^2+9)+根號(4-x)^2+25;

構造兩個直角三角形,直角三角形abc,直角邊ab=3;ac=x;

直角三角形a'b'c,直角邊a'b'=5,a'c=(4-x);

其中兩個三角形共頂點c,並且兩個角c是對頂角,那麼很明顯,y=bc+cb';並且aa'=x+4-x=4是固定長度;

問題轉化為在aa'中選一點c,使得b經過c點到b'距離最短,很明顯連線bb'的直線最短,所以變成求解三角形了。

由三角函式知識,

3/tanc+5/tanc=4

=>tanc=2;

=>x=ac=3/tanc=1.5;

所以x=1.5時取得最小值。

3樓:夢之林

解:因為y=(x-0)2+(0-3)2+(x-4)2+(0-5)2,所以函式y是x軸上的點p(x,0)與兩定點a(0,3)、b(4,5)距離之和.

y的最小值就是|pa|+|pb|的最小值.由平面幾何知識可知,若a關於x軸的對稱點為a′(0,-3),則|pa|+|pb|的最小值等於|a′b|,即(4-0)2+(5+3)2=45.

所以ymin=45.

求函式y=根號(x²+9)+根號(x²-8x+41)的最小值

4樓:凌雲之士

y=根號(x^2+9)+根號(4-x)^2+25;

構造兩個

直角三角形,直角三角形abc,直角邊ab=3;ac=x;

直角三角形a'b'c,直角邊a'b'=5,a'c=(4-x);

其中兩個三角形共頂點c,並且兩個角c是對頂角,那麼很明顯,y=bc+cb';並且aa'=x+4-x=4是固定長度;

問題轉化為在aa'中選一點c,使得b經過c點到b'距離最短,很明顯連線bb'的直線最短,所以變成求解三角形了。

由三角函式知識,

3/tanc+5/tanc=4

=>tanc=2;

=>x=ac=3/tanc=1.5;

所以x=1.5時取得最小值。

5樓:桌子椅子凳子

看作是p(x,0)點到a(0,3)與b(4,-5)的距離和,當三點共線時距離最小,最小值是ab之間的距離,距離為4倍的根號5

6樓:東野沫泉

右邊根號下x²-8x+41配方得(x²-8x+16)+41-16=(x-4)^2+25,當x=4時,根號下最小值為5,所以左邊根號下取x=4,則y的最小值為5+5=10.

求函式y=根號下(x平方+9)+根號下(x平方-10x+29)的最小值。多謝

7樓:匿名使用者

解:原函式式可化為:y=根號下[(x-0)²+(0-3)²]+根號下[(x-5)²+(0-2)²]

該函式式的幾何意義:在平面直角座標系中,內x軸上容一點(x,0)到點(0,3)和點(5,2)的距離之和

∴函式y的最小值的求法:作點(0,3)關於x軸的對稱點(0,-3),這一點與(5,2)的連線長為函式y的最小值,連線與x軸的交點的橫座標為此時x的解

∴y的最小值為:5倍根號2

8樓:匿名使用者

y=根號下(baix平方+3平方)+根號下du[(x-5)平方zhi+2平方]

聯想到解析幾何中的

dao距離公式。專y的值即為點(屬x,0)到點(0,3)和(5,-2)的距離之和,y的最小值即為點(0,3)和(5,-2)的距離,是5根號2。

9樓:僑有福泥月

這是乙個典型的數形結合思想解題的例子,

解答如下(注意:√表示根回號,x^2表示x的平方答)y=√(x^2-10x+29)+√(x^2+9)即y=√[(x-5)^2+2^2]+√(x^2+3^2)在上式中,將y看作是在平面直角座標系中點(x,0)到點a(5,2)與點b(0,3)的距離之和,問題也就變為在x軸上找一點使得到點a(5,2)與點b(0,3)的距離之和最小。

作a關於x軸的對稱點c(5,-2).則對於x軸上任意一點x,因為:

xa+xb=xc+xb≥bc(兩點之間線端最短),所以xa+xb的最小值就是bc的值,為5√2。

所以y=√(x^2-10x+29)+√(x^2+9)的最小值是5√2,當且僅當x=3時取到。

求函式y根號下(x平方 9) 根號下 x平方 10x 29 的最小值。多謝

解 原函式式可化為 y 根號下 x 0 0 3 根號下 x 5 0 2 該函式式的幾何意義 在平面直角座標系中,內x軸上容一點 x,0 到點 0,3 和點 5,2 的距離之和 函式y的最小值的求法 作點 0,3 關於x軸的對稱點 0,3 這一點與 5,2 的連線長為函式y的最小值,連線與x軸的交點的...

函式y根號下x22x2根號下x24x

解 y 根號下x 2x 2 根號下x 4x 8 x 1 1 x 2 4 可見y的最小值應該是x在 1,2 之間 當x 1時 y 1 5 3.236 當x 2時 y 2 2 3.414 可見最小值是x 1時 y 1 5 原題是 函式y x 2 2x 2 x 2 4x 8 的最小值是多少?解 y x 1...

已知y根號x 3加根號3 x 2,求X的Y次方 Y的X次方的值

已知y 根號x 3加根號3 x 2,則 x 3大於等於0,3 x大於等於0 所以x 3 y 2x的y次方 y的x次方的值 9 8 17 若y 根號x 3 根號3 x 2求x的y次方的值 y x 3 3 x 2 根據二次根式有意義得 x 3 0 3 x 0 解得 x 3,y 2 x y 3 9。若y ...